These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 31301594)
1. Genetic properties of cadmium translocation from straw to brown rice in low-grain cadmium rice (Oryza sativa L.) line. Guo J; Li K; Zhang X; Huang H; Huang F; Zhang L; Wang Y; Li T; Yu H Ecotoxicol Environ Saf; 2019 Oct; 182():109422. PubMed ID: 31301594 [TBL] [Abstract][Full Text] [Related]
2. Crucial roles of cadmium retention in nodeⅡ for restraining cadmium transport from straw to ear at reproductive period in a grain low-cadmium rice line (Oryza sativa L.). Guo J; Zhang X; Ye D; Huang H; Wang Y; Zheng Z; Li T; Yu H Ecotoxicol Environ Saf; 2020 Dec; 205():111323. PubMed ID: 32956864 [TBL] [Abstract][Full Text] [Related]
3. Cadmium accumulation characteristics of low-cadmium rice (Oryza sativa L.) line and F Li K; Yu H; Li T; Chen G; Huang F Environ Sci Pollut Res Int; 2017 Jul; 24(21):17566-17576. PubMed ID: 28597385 [TBL] [Abstract][Full Text] [Related]
4. OsWNK9 regulates cadmium concentration in brown rice by restraining cadmium transport from straw to brown rice. Guo Z; Guo J; Yu H; Huang H; Ye D; Liu T; Zhang X; Zhang L; Zheng Z; Wang Y; Li T Ecotoxicol Environ Saf; 2024 Sep; 283():116810. PubMed ID: 39096692 [TBL] [Abstract][Full Text] [Related]
5. Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). Ishikawa S; Ae N; Yano M New Phytol; 2005 Nov; 168(2):345-50. PubMed ID: 16219074 [TBL] [Abstract][Full Text] [Related]
6. Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. Kashiwagi T; Shindoh K; Hirotsu N; Ishimaru K BMC Plant Biol; 2009 Jan; 9():8. PubMed ID: 19154618 [TBL] [Abstract][Full Text] [Related]
7. Genetic mapping of ionomic quantitative trait loci in rice grain and straw reveals OsMOT1;1 as the putative causal gene for a molybdenum QTL qMo8. Wang C; Tang Z; Zhuang JY; Tang Z; Huang XY; Zhao FJ Mol Genet Genomics; 2020 Mar; 295(2):391-407. PubMed ID: 31797032 [TBL] [Abstract][Full Text] [Related]
8. Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Yan YF; Lestari P; Lee KJ; Kim MY; Lee SH; Lee BW Genome; 2013 Apr; 56(4):227-32. PubMed ID: 23706075 [TBL] [Abstract][Full Text] [Related]
9. Effects of Interaction between Cadmium (Cd) and Selenium (Se) on Grain Yield and Cd and Se Accumulation in a Hybrid Rice (Oryza sativa) System. Huang B; Xin J; Dai H; Zhou W J Agric Food Chem; 2017 Nov; 65(43):9537-9546. PubMed ID: 29016122 [TBL] [Abstract][Full Text] [Related]
10. A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). Ueno D; Kono I; Yokosho K; Ando T; Yano M; Ma JF New Phytol; 2009; 182(3):644-653. PubMed ID: 19309445 [TBL] [Abstract][Full Text] [Related]
11. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain. Sui F; Zhao D; Zhu H; Gong Y; Tang Z; Huang XY; Zhang G; Zhao FJ J Exp Bot; 2019 May; 70(10):2857-2871. PubMed ID: 30840768 [TBL] [Abstract][Full Text] [Related]
12. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Cao ZZ; Qin ML; Lin XY; Zhu ZW; Chen MX Environ Pollut; 2018 Jul; 238():76-84. PubMed ID: 29547864 [TBL] [Abstract][Full Text] [Related]
13. The Role of Node Restriction on Cadmium Accumulation in the Brown Rice of 12 Chinese Rice (Oryza sativa L.) Cultivars. Huang G; Ding C; Guo F; Li X; Zhou Z; Zhang T; Wang X J Agric Food Chem; 2017 Nov; 65(47):10157-10164. PubMed ID: 29091443 [TBL] [Abstract][Full Text] [Related]
14. [Effects of Straw Incorporation on Cadmium Accumulation and Subcellular Distribution in Rice]. Duan GL; Wang F; Cen K; Wang BX; Cheng WD; Liu YC; Zhang HM Huan Jing Ke Xue; 2017 Sep; 38(9):3927-3936. PubMed ID: 29965276 [TBL] [Abstract][Full Text] [Related]
15. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Lin X; Mou R; Cao Z; Xu P; Wu X; Zhu Z; Chen M Sci Total Environ; 2016 Nov; 569-570():97-104. PubMed ID: 27341110 [TBL] [Abstract][Full Text] [Related]
16. Development of nutritious rice with high zinc/selenium and low cadmium in grains through QTL pyramiding. Liu C; Ding S; Zhang A; Hong K; Jiang H; Yang S; Ruan B; Zhang B; Dong G; Guo L; Zeng D; Qian Q; Gao Z J Integr Plant Biol; 2020 Mar; 62(3):349-359. PubMed ID: 31957138 [TBL] [Abstract][Full Text] [Related]
17. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq. Cao ZZ; Lin XY; Yang YJ; Guan MY; Xu P; Chen MX BMC Plant Biol; 2019 Jun; 19(1):250. PubMed ID: 31185911 [TBL] [Abstract][Full Text] [Related]
18. Effects of alkaline and bioorganic amendments on cadmium, lead, zinc, and nutrient accumulation in brown rice and grain yield in acidic paddy fields contaminated with a mixture of heavy metals. He H; Tam NF; Yao A; Qiu R; Li WC; Ye Z Environ Sci Pollut Res Int; 2016 Dec; 23(23):23551-23560. PubMed ID: 27614643 [TBL] [Abstract][Full Text] [Related]
19. Advances in the Uptake and Transport Mechanisms and QTLs Mapping of Cadmium in Rice. Chen J; Zou W; Meng L; Fan X; Xu G; Ye G Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336794 [TBL] [Abstract][Full Text] [Related]
20. A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. Ishikawa S; Abe T; Kuramata M; Yamaguchi M; Ando T; Yamamoto T; Yano M J Exp Bot; 2010 Mar; 61(3):923-34. PubMed ID: 20022924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]