These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31301701)

  • 1. Homogeneous nucleation of ferroelectric ice crystal driven by spontaneous dipolar ordering in supercooled TIP5P water.
    Shi R; Tanaka H
    J Chem Phys; 2019 Jul; 151(2):024501. PubMed ID: 31301701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of ice nucleation by electric fields.
    Yan JY; Patey GN
    J Phys Chem A; 2012 Jul; 116(26):7057-64. PubMed ID: 22686470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism.
    Lupi L; Peters B; Molinero V
    J Chem Phys; 2016 Dec; 145(21):211910. PubMed ID: 28799353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ice is born in low-mobility regions of supercooled liquid water.
    Fitzner M; Sosso GC; Cox SJ; Michaelides A
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2009-2014. PubMed ID: 30670640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase boundaries, nucleation rates and speed of crystal growth of the water-to-ice transition under an electric field: a simulation study.
    Zaragoza A; Espinosa JR; Ramos R; Antonio Cobos J; Luis Aragones J; Vega C; Sanz E; Ramírez J; Valeriani C
    J Phys Condens Matter; 2018 May; 30(17):174002. PubMed ID: 29508769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signatures of sluggish dynamics and local structural ordering during ice nucleation.
    Martelli F; Palmer JC
    J Chem Phys; 2022 Mar; 156(11):114502. PubMed ID: 35317598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferroelectric domain formation in discotic liquid crystals: Monte Carlo study on the influence of boundary conditions.
    Bose TK; Saha J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042503. PubMed ID: 26565261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrofreezing of confined water.
    Zangi R; Mark AE
    J Chem Phys; 2004 Apr; 120(15):7123-30. PubMed ID: 15267616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulation study of homogeneous ice nucleation in supercooled salty water.
    Soria GD; Espinosa JR; Ramirez J; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2018 Jun; 148(22):222811. PubMed ID: 29907042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric ordering of water molecules arranged in a dipolar lattice.
    Belyanchikov MA; Savinov M; Bedran ZV; Bednyakov P; Proschek P; Prokleska J; Abalmasov VA; Petzelt J; Zhukova ES; Thomas VG; Dudka A; Zhugayevych A; Prokhorov AS; Anzin VB; Kremer RK; Fischer JKH; Lunkenheimer P; Loidl A; Uykur E; Dressel M; Gorshunov B
    Nat Commun; 2020 Aug; 11(1):3927. PubMed ID: 32764722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural transformation in supercooled water controls the crystallization rate of ice.
    Moore EB; Molinero V
    Nature; 2011 Nov; 479(7374):506-8. PubMed ID: 22113691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electro-nucleation of water nano-droplets in No Man's Land to fault-free ice I
    Nandi PK; Burnham CJ; English NJ
    Phys Chem Chem Phys; 2018 Mar; 20(12):8042-8053. PubMed ID: 29513305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding electrofreezing in water simulations.
    Yan JY; Overduin SD; Patey GN
    J Chem Phys; 2014 Aug; 141(7):074501. PubMed ID: 25149795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy landscapes for homogeneous nucleation of ice for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2012 Feb; 136(5):054501. PubMed ID: 22320745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition between ices Ih and Ic in homogeneous water freezing.
    Zaragoza A; Conde MM; Espinosa JR; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2015 Oct; 143(13):134504. PubMed ID: 26450320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2014 Aug; 141(8):084501. PubMed ID: 25173015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice Ih vs. ice III along the homogeneous nucleation line.
    Espinosa JR; Diez AL; Vega C; Valeriani C; Ramirez J; Sanz E
    Phys Chem Chem Phys; 2019 Mar; 21(10):5655-5660. PubMed ID: 30793135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.