These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31301710)

  • 1. Group-theoretical formulation of an Eckart-frame kinetic energy operator in curvilinear coordinates for polyatomic molecules.
    Rey M
    J Chem Phys; 2019 Jul; 151(2):024101. PubMed ID: 31301710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame.
    Yachmenev A; Yurchenko SN
    J Chem Phys; 2015 Jul; 143(1):014105. PubMed ID: 26156463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational energy levels with arbitrary potentials using the Eckart-Watson Hamiltonians and the discrete variable representation.
    Mátyus E; Czakó G; Sutcliffe BT; Császár AG
    J Chem Phys; 2007 Aug; 127(8):084102. PubMed ID: 17764224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspects of the Eckart frame ro-vibrational kinetic energy operator.
    Szalay V
    J Chem Phys; 2015 Aug; 143(6):064104. PubMed ID: 26277124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of ρ-dependent coordinate transformations for nonrigid molecules in the Hougen-Bunker-Johns formalism.
    Viglaska D; Rey M; Nikitin AV; Tyuterev VG
    J Chem Phys; 2020 Aug; 153(8):084102. PubMed ID: 32872870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding nuclear motions in molecules: Derivation of Eckart frame ro-vibrational Hamiltonian operators via a gateway Hamiltonian operator.
    Szalay V
    J Chem Phys; 2015 May; 142(17):174107. PubMed ID: 25956090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerically constructed internal-coordinate Hamiltonian with Eckart embedding and its application for the inversion tunneling of ammonia.
    Fábri C; Mátyus E; Császár AG
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Feb; 119():84-9. PubMed ID: 23702049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete nuclear motion Hamiltonian in the irreducible normal mode tensor operator formalism for the methane molecule.
    Rey M; Nikitin AV; Tyuterev VG
    J Chem Phys; 2012 Jun; 136(24):244106. PubMed ID: 22755564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing rovibrational levels of methane with curvilinear internal vibrational coordinates and an Eckart frame.
    Wang XG; Carrington T
    J Chem Phys; 2013 Mar; 138(10):104106. PubMed ID: 23514464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eckart ro-vibrational Hamiltonians via the gateway Hamilton operator: Theory and practice.
    Szalay V
    J Chem Phys; 2017 Mar; 146(12):124107. PubMed ID: 28388108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eckart frame vibration-rotation Hamiltonians: contravariant metric tensor.
    Pesonen J
    J Chem Phys; 2014 Feb; 140(7):074101. PubMed ID: 24559332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rovibrational spectroscopy using a kinetic energy operator in Eckart frame and the multi-configuration time-dependent Hartree (MCTDH) approach.
    Sadri K; Lauvergnat D; Gatti F; Meyer HD
    J Chem Phys; 2014 Sep; 141(11):114101. PubMed ID: 25240339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dynamics with curvilinear coordinates: models and kinetic energy operator.
    Marsili E; Agostini F; Nauts A; Lauvergnat D
    Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200388. PubMed ID: 35341305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical and exact kinetic energy operator using Eckart conditions with one or several reference geometries: Application to HONO.
    Lauvergnat D; Luis JM; Kirtman B; Reis H; Nauts A
    J Chem Phys; 2016 Feb; 144(8):084116. PubMed ID: 26931690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fourth age of quantum chemistry: molecules in motion.
    Császár AG; Fábri C; Szidarovszky T; Mátyus E; Furtenbacher T; Czakó G
    Phys Chem Chem Phys; 2012 Jan; 14(3):1085-106. PubMed ID: 21997300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational Energy Levels via Finite-Basis Calculations Using a Quasi-Analytic Form of the Kinetic Energy.
    Vázquez J; Harding ME; Stanton JF; Gauss J
    J Chem Theory Comput; 2011 May; 7(5):1428-42. PubMed ID: 26610133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly excited vibrational levels of methane up to 10 300 cm
    Nikitin AV; Protasevich AE; Rey M; Tyuterev VG
    J Chem Phys; 2018 Sep; 149(12):124305. PubMed ID: 30278662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic energy operators in linearized internal coordinates.
    Pesonen J
    J Chem Phys; 2008 Jan; 128(4):044319. PubMed ID: 18247961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical expansion of the kinetic energy operator in curvilinear coordinates for the vibrational self-consistent field method.
    Strobusch D; Scheurer Ch
    J Chem Phys; 2011 Sep; 135(12):124102. PubMed ID: 21974507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-adiabatic mass correction to the rovibrational states of molecules: Numerical application for the
    Mátyus E
    J Chem Phys; 2018 Nov; 149(19):194111. PubMed ID: 30466265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.