These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 31301717)

  • 41. Electric permittivity of concentrated suspensions of elongated goethite particles.
    Rica RA; Jiménez ML; Delgado AV
    J Colloid Interface Sci; 2010 Mar; 343(2):564-73. PubMed ID: 20044095
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Clustering of microswimmers: interplay of shape and hydrodynamics.
    Theers M; Westphal E; Qi K; Winkler RG; Gompper G
    Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions.
    Chu HCW; Zia RN
    J Colloid Interface Sci; 2019 Mar; 539():388-399. PubMed ID: 30597285
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dilatant flow of concentrated suspensions of rough particles.
    Lootens D; van Damme H; Hémar Y; Hébraud P
    Phys Rev Lett; 2005 Dec; 95(26):268302. PubMed ID: 16486413
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermophoresis in colloidal suspensions driven by Marangoni forces.
    Würger A
    Phys Rev Lett; 2007 Mar; 98(13):138301. PubMed ID: 17501246
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electroviscous contribution to the rheology of colloidal unimolecular polymer (CUP) particles in water.
    Chen M; Riddles CJ; Van De Mark MR
    Langmuir; 2013 Nov; 29(46):14034-43. PubMed ID: 24200369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A; Videcoq A; Cerbelaud M; Piechowiak MA; Chartier T; Ala-Nissila T; Bochicchio D; Ferrando R
    J Phys Chem B; 2013 Nov; 117(46):14509-17. PubMed ID: 24143912
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-time self-diffusion of charged colloidal particles: electrokinetic and hydrodynamic interaction effects.
    McPhie MG; Nägele G
    J Chem Phys; 2007 Jul; 127(3):034906. PubMed ID: 17655462
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrodynamic segregation in a bidisperse colloidal suspension in microchannel flow: A theoretical study.
    Kanehl P; Stark H
    J Chem Phys; 2015 Jun; 142(21):214901. PubMed ID: 26049518
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rotational diffusion of spherical colloids close to a wall.
    Rogers SA; Lisicki M; Cichocki B; Dhont JK; Lang PR
    Phys Rev Lett; 2012 Aug; 109(9):098305. PubMed ID: 23002893
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrodynamic repulsion of spheroidal microparticles from micro-rough surfaces.
    Belyaev AV
    PLoS One; 2017; 12(8):e0183093. PubMed ID: 28806767
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulating Brownian suspensions with fluctuating hydrodynamics.
    Delmotte B; Keaveny EE
    J Chem Phys; 2015 Dec; 143(24):244109. PubMed ID: 26723653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles.
    Lefauve A; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):021002. PubMed ID: 25353410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shear viscosity in hard-sphere and adhesive colloidal suspensions with reverse non-equilibrium molecular dynamics.
    Cerbelaud M; Maria Laganapan A; Ala-Nissila T; Ferrando R; Videcoq A
    Soft Matter; 2017 May; 13(21):3909-3917. PubMed ID: 28488709
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Emergent behavior in particle-laden microfluidic systems informs strategies for improving cell and particle separations.
    Vahey MD; Voldman J
    Lab Chip; 2011 Jun; 11(12):2071-80. PubMed ID: 21541439
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.
    Forest MG; Wang Q; Zhou R
    Soft Matter; 2015 Aug; 11(32):6393-402. PubMed ID: 26169540
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Translation and rotation of slightly deformed colloidal spheres experiencing slip.
    Chang YC; Keh HJ
    J Colloid Interface Sci; 2009 Feb; 330(1):201-10. PubMed ID: 19012900
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.
    Furukawa A; Marenduzzo D; Cates ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022303. PubMed ID: 25215734
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaction potential and near wall dynamics of spherical colloids in suspensions of rod-like fd-virus.
    Holmqvist P; Kleshchanok D; Lang PR
    Eur Phys J E Soft Matter; 2008; 26(1-2):177-82. PubMed ID: 18427726
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rotational and translational self-diffusion in concentrated suspensions of permeable particles.
    Abade GC; Cichocki B; Ekiel-Jezewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2011 Jun; 134(24):244903. PubMed ID: 21721660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.