BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31301863)

  • 1. Combining morphological and biomechanical factors for optimal carotid plaque progression prediction: An MRI-based follow-up study using 3D thin-layer models.
    Wang Q; Tang D; Wang L; Canton G; Wu Z; Hatsukami TS; Billiar KL; Yuan C
    Int J Cardiol; 2019 Oct; 293():266-271. PubMed ID: 31301863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid-structure interaction models based on patient-specific IVUS at baseline and follow-up for prediction of coronary plaque progression by morphological and biomechanical factors: A preliminary study.
    Wang L; Tang D; Maehara A; Wu Z; Yang C; Muccigrosso D; Zheng J; Bach R; Billiar KL; Mintz GS
    J Biomech; 2018 Feb; 68():43-50. PubMed ID: 29274686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress.
    Yang C; Canton G; Yuan C; Ferguson M; Hatsukami TS; Tang D
    Biomed Eng Online; 2011 Jul; 10():61. PubMed ID: 21771293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-factor decision-making strategy for better coronary plaque burden increase prediction: a patient-specific 3D FSI study using IVUS follow-up data.
    Wang L; Tang D; Maehara A; Molony D; Zheng J; Samady H; Wu Z; Lu W; Zhu J; Ma G; Giddens DP; Stone GW; Mintz GS
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1269-1280. PubMed ID: 30937650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid-structure interaction models and machine learning methods with patient follow-up data: a feasibility study.
    Guo X; Maehara A; Matsumura M; Wang L; Zheng J; Samady H; Mintz GS; Giddens DP; Tang D
    Biomed Eng Online; 2021 Apr; 20(1):34. PubMed ID: 33823858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D MRI-based multicomponent thin layer structure only plaque models for atherosclerotic plaques.
    Huang X; Yang C; Zheng J; Bach R; Muccigrosso D; Woodard PK; Tang D
    J Biomech; 2016 Sep; 49(13):2726-2733. PubMed ID: 27344199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using intravascular ultrasound image-based fluid-structure interaction models and machine learning methods to predict human coronary plaque vulnerability change.
    Wang L; Tang D; Maehara A; Wu Z; Yang C; Muccigrosso D; Matsumura M; Zheng J; Bach R; Billiar KL; Stone GW; Mintz GS
    Comput Methods Biomech Biomed Engin; 2020 Nov; 23(15):1267-1276. PubMed ID: 32696674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models.
    Lv R; Maehara A; Matsumura M; Wang L; Zhang C; Huang M; Guo X; Samady H; Giddens DP; Zheng J; Mintz GS; Tang D
    Front Bioeng Biotechnol; 2021; 9():713525. PubMed ID: 34497800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up.
    Wang Q; Canton G; Guo J; Guo X; Hatsukami TS; Billiar KL; Yuan C; Wu Z; Tang D
    PLoS One; 2017; 12(7):e0180829. PubMed ID: 28715441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IVUS-based FSI models for human coronary plaque progression study: components, correlation and predictive analysis.
    Wang L; Wu Z; Yang C; Zheng J; Bach R; Muccigrosso D; Billiar K; Maehara A; Mintz GS; Tang D
    Ann Biomed Eng; 2015 Jan; 43(1):107-21. PubMed ID: 25245219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and structural characteristics of carotid plaques by combined analysis with echotracking system and MR imaging.
    Beaussier H; Naggara O; Calvet D; Joannides R; Guegan-Massardier E; Gerardin E; Iacob M; Laloux B; Bozec E; Bellien J; Touze E; Masson I; Thuillez C; Oppenheim C; Boutouyrie P; Laurent S
    JACC Cardiovasc Imaging; 2011 May; 4(5):468-77. PubMed ID: 21565733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo serial MRI-based models and statistical methods to quantify sensitivity and specificity of mechanical predictors for carotid plaque rupture: location and beyond.
    Wu Z; Yang C; Tang D
    J Biomech Eng; 2011 Jun; 133(6):064503. PubMed ID: 21744932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of early atherosclerotic lesions in carotid arteries with quantitative characteristics measured by 3D MRI.
    Qiao H; He Q; Chen Z; Xu D; Huang L; He L; Jiang L; Li R; Luo J; Yuan C; Zhao X
    J Magn Reson Imaging; 2016 Nov; 44(5):1270-1276. PubMed ID: 27079951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D MRI-based multicomponent FSI models for atherosclerotic plaques.
    Tang D; Yang C; Zheng J; Woodard PK; Sicard GA; Saffitz JE; Yuan C
    Ann Biomed Eng; 2004 Jul; 32(7):947-60. PubMed ID: 15298432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models.
    Tang D; Yang C; Mondal S; Liu F; Canton G; Hatsukami TS; Yuan C
    J Biomech; 2008; 41(4):727-36. PubMed ID: 18191138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined non-invasive assessment of endothelial shear stress and molecular imaging of inflammation for the prediction of inflamed plaque in hyperlipidaemic rabbit aortas.
    Gitsioudis G; Chatzizisis YS; Wolf P; Missiou A; Antoniadis AP; Mitsouras D; Bartling S; Arica Z; Stuber M; Rybicki FJ; Nunninger M; Erbel C; Libby P; Giannoglou GD; Katus HA; Korosoglou G
    Eur Heart J Cardiovasc Imaging; 2017 Jan; 18(1):19-30. PubMed ID: 27013245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using in vivo Cine and 3D multi-contrast MRI to determine human atherosclerotic carotid artery material properties and circumferential shrinkage rate and their impact on stress/strain predictions.
    Liu H; Canton G; Yuan C; Yang C; Billiar K; Teng Z; Hoffman AH; Tang D
    J Biomech Eng; 2012 Jan; 134(1):011008. PubMed ID: 22482663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation of three-dimensional plaque formation and progression in the carotid artery.
    Filipovic N; Teng Z; Radovic M; Saveljic I; Fotiadis D; Parodi O
    Med Biol Eng Comput; 2013 Jun; 51(6):607-16. PubMed ID: 23354828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cap inflammation leads to higher plaque cap strain and lower cap stress: An MRI-PET/CT-based FSI modeling approach.
    Tang D; Yang C; Huang S; Mani V; Zheng J; Woodard PK; Robson P; Teng Z; Dweck M; Fayad ZA
    J Biomech; 2017 Jan; 50():121-129. PubMed ID: 27847118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wear and tear.
    Hoeks AP; Kooi ME
    JACC Cardiovasc Imaging; 2011 May; 4(5):478-80. PubMed ID: 21565734
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.