These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
800 related articles for article (PubMed ID: 31302299)
21. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T₁-weighted MR imaging of gliomas. Luo Y; Yang J; Yan Y; Li J; Shen M; Zhang G; Mignani S; Shi X Nanoscale; 2015 Sep; 7(34):14538-46. PubMed ID: 26260703 [TBL] [Abstract][Full Text] [Related]
23. Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. Zhang L; Zhou H; Belzile O; Thorpe P; Zhao D J Control Release; 2014 Jun; 183():114-23. PubMed ID: 24698945 [TBL] [Abstract][Full Text] [Related]
24. A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent. Xiong F; Hu K; Yu H; Zhou L; Song L; Zhang Y; Shan X; Liu J; Gu N Pharm Res; 2017 Aug; 34(8):1683-1692. PubMed ID: 28608138 [TBL] [Abstract][Full Text] [Related]
25. Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe Zhou P; Zhao H; Wang Q; Zhou Z; Wang J; Deng G; Wang X; Liu Q; Yang H; Yang S Adv Healthc Mater; 2018 May; 7(9):e1701201. PubMed ID: 29356419 [TBL] [Abstract][Full Text] [Related]
26. Intrinsically Mn2+-Chelated Polydopamine Nanoparticles for Simultaneous Magnetic Resonance Imaging and Photothermal Ablation of Cancer Cells. Miao ZH; Wang H; Yang H; Li ZL; Zhen L; Xu CY ACS Appl Mater Interfaces; 2015 Aug; 7(31):16946-52. PubMed ID: 26196160 [TBL] [Abstract][Full Text] [Related]
27. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. Albarqi HA; Wong LH; Schumann C; Sabei FY; Korzun T; Li X; Hansen MN; Dhagat P; Moses AS; Taratula O; Taratula O ACS Nano; 2019 Jun; 13(6):6383-6395. PubMed ID: 31082199 [TBL] [Abstract][Full Text] [Related]
28. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Blanco-Andujar C; Walter A; Cotin G; Bordeianu C; Mertz D; Felder-Flesch D; Begin-Colin S Nanomedicine (Lond); 2016 Jul; 11(14):1889-910. PubMed ID: 27389703 [TBL] [Abstract][Full Text] [Related]
29. Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Zhang ZQ; Song SC Biomaterials; 2016 Nov; 106():13-23. PubMed ID: 27543919 [TBL] [Abstract][Full Text] [Related]
30. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427 [TBL] [Abstract][Full Text] [Related]
31. High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Xie J; Zhang Y; Yan C; Song L; Wen S; Zang F; Chen G; Ding Q; Yan C; Gu N Biomaterials; 2014 Nov; 35(33):9126-36. PubMed ID: 25106772 [TBL] [Abstract][Full Text] [Related]
32. Exerting Enhanced Permeability and Retention Effect Driven Delivery by Ultrafine Iron Oxide Nanoparticles with T Wang L; Huang J; Chen H; Wu H; Xu Y; Li Y; Yi H; Wang YA; Yang L; Mao H ACS Nano; 2017 May; 11(5):4582-4592. PubMed ID: 28426929 [TBL] [Abstract][Full Text] [Related]
33. A Comparative Study of Receptor-Targeted Magnetosome and HSA-Coated Iron Oxide Nanoparticles as MRI Contrast-Enhancing Agent in Animal Cancer Model. Erdal E; Demirbilek M; Yeh Y; Akbal Ö; Ruff L; Bozkurt D; Cabuk A; Senel Y; Gumuskaya B; Algın O; Colak S; Esener S; Denkbas EB Appl Biochem Biotechnol; 2018 May; 185(1):91-113. PubMed ID: 29082480 [TBL] [Abstract][Full Text] [Related]
34. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy. Kim KS; Kim J; Lee JY; Matsuda S; Hideshima S; Mori Y; Osaka T; Na K Nanoscale; 2016 Jun; 8(22):11625-34. PubMed ID: 27217004 [TBL] [Abstract][Full Text] [Related]
35. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Kalber TL; Ordidge KL; Southern P; Loebinger MR; Kyrtatos PG; Pankhurst QA; Lythgoe MF; Janes SM Int J Nanomedicine; 2016; 11():1973-83. PubMed ID: 27274229 [TBL] [Abstract][Full Text] [Related]
36. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Yang K; Yang G; Chen L; Cheng L; Wang L; Ge C; Liu Z Biomaterials; 2015 Jan; 38():1-9. PubMed ID: 25457978 [TBL] [Abstract][Full Text] [Related]
37. Near-Infrared Fluorescent and Magnetic Resonance Dual-Imaging Coacervate Nanoprobes for Trypsin Mapping and Targeted Payload Delivery of Malignant Tumors. Guo H; Song S; Dai T; Sun K; Zhou G; Li M; Mann S; Dou H ACS Appl Mater Interfaces; 2020 Apr; 12(15):17302-17313. PubMed ID: 32212678 [TBL] [Abstract][Full Text] [Related]
38. An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug delivery. Guo H; Zhang Y; Liang W; Tai F; Dong Q; Zhang R; Yu B; Wong WY J Inorg Biochem; 2019 Mar; 192():72-81. PubMed ID: 30612028 [TBL] [Abstract][Full Text] [Related]
39. Activatable molecular MRI nanoprobe for tumor cell imaging based on gadolinium oxide and iron oxide nanoparticle. Li J; Wang S; Wu C; Dai Y; Hou P; Han C; Xu K Biosens Bioelectron; 2016 Dec; 86():1047-1053. PubMed ID: 27501342 [TBL] [Abstract][Full Text] [Related]
40. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Svenskaya Y; Garello F; Lengert E; Kozlova A; Verkhovskii R; Bitonto V; Ruggiero MR; German S; Gorin D; Terreno E Nanotheranostics; 2021; 5(3):362-377. PubMed ID: 33850694 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]