These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 31302337)

  • 1. Dynamic stability during increased walking speeds is related to balance confidence of older adults: a pilot study.
    Kongsuk J; Brown DA; Hurt CP
    Gait Posture; 2019 Sep; 73():86-92. PubMed ID: 31302337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased Attentional Focus on Walking by Older Adults Limits Maximum Speed and Is Related to Dynamic Stability.
    Kongsuk J; Brown CJ; Rosenblatt NJ; Hurt CP
    Gerontology; 2022; 68(9):1010-1017. PubMed ID: 34903690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of walking speed on gait stability and interlimb coordination in younger and older adults.
    Krasovsky T; Lamontagne A; Feldman AG; Levin MF
    Gait Posture; 2014; 39(1):378-85. PubMed ID: 24008010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability-normalised walking speed: A new approach for human gait perturbation research.
    McCrum C; Willems P; Karamanidis K; Meijer K
    J Biomech; 2019 Apr; 87():48-53. PubMed ID: 30827703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination of trunk and foot acceleration during gait is affected by walking velocity and fall history in elderly adults.
    Craig JJ; Bruetsch AP; Huisinga JM
    Aging Clin Exp Res; 2019 Jul; 31(7):943-950. PubMed ID: 30194680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of forward-directed aiding force on gait mechanics in healthy young adults while walking faster.
    Dionisio VC; Hurt CP; Brown DA
    Gait Posture; 2018 Jul; 64():12-17. PubMed ID: 29803081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of visual deprivation on stability among young and older adults during treadmill walking.
    Saucedo F; Yang F
    Gait Posture; 2017 May; 54():106-111. PubMed ID: 28284144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of walking speed, strength and range of motion on gait stability in healthy older adults.
    Kang HG; Dingwell JB
    J Biomech; 2008 Oct; 41(14):2899-905. PubMed ID: 18790480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-Related Imbalance Is Associated With Slower Walking Speed: An Analysis From the National Health and Nutrition Examination Survey.
    Xie YJ; Liu EY; Anson ER; Agrawal Y
    J Geriatr Phys Ther; 2017; 40(4):183-189. PubMed ID: 27341325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speeding up: Discrete mediolateral perturbations increased self-paced walking speed in young and older adults.
    Castano CR; Lee LD; Huang HJ
    Gait Posture; 2023 May; 102():198-204. PubMed ID: 37043989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Varied movement errors drive learning of dynamic balance control during walking in people with incomplete spinal cord injury: a pilot study.
    Lin JT; Hsu CJ; Dee W; Chen D; Rymer WZ; Wu M
    Exp Brain Res; 2020 Apr; 238(4):981-993. PubMed ID: 32189042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imposed Faster and Slower Walking Speeds Influence Gait Stability Differently in Parkinson Fallers.
    Cole MH; Sweeney M; Conway ZJ; Blackmore T; Silburn PA
    Arch Phys Med Rehabil; 2017 Apr; 98(4):639-648. PubMed ID: 27993586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum walking speeds obtained using treadmill and overground robot system in persons with post-stroke hemiplegia.
    Capó-Lugo CE; Mullens CH; Brown DA
    J Neuroeng Rehabil; 2012 Oct; 9():80. PubMed ID: 23057500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnitude and variability of gait characteristics when walking on an irregular surface at different speeds.
    Blair S; Lake MJ; Ding R; Sterzing T
    Hum Mov Sci; 2018 Jun; 59():112-120. PubMed ID: 29653340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pilot study of reactive balance training using trips and slips with increasing unpredictability in young and older adults: Biomechanical mechanisms, falls and clinical feasibility.
    Okubo Y; Brodie MA; Sturnieks DL; Hicks C; Lord SR
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():171-179. PubMed ID: 31153101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms used to increase propulsive forces on a treadmill in older adults.
    Hedrick EA; Parker SM; Hsiao H; Knarr BA
    J Biomech; 2021 Jan; 115():110139. PubMed ID: 33321429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are there different factors affecting walking speed and gait cycle variability between men and women in community-dwelling older adults?
    Inoue W; Ikezoe T; Tsuboyama T; Sato I; Malinowska KB; Kawaguchi T; Tabara Y; Nakayama T; Matsuda F; Ichihashi N
    Aging Clin Exp Res; 2017 Apr; 29(2):215-221. PubMed ID: 27068303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of First Recovery Step Response following Unexpected Loss of Balance during Walking: A Dynamic Approach.
    Nachmani H; Shani G; Shapiro A; Melzer I
    Gerontology; 2020; 66(4):362-370. PubMed ID: 32069450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Walking speed changes in response to novel user-driven treadmill control.
    Ray NT; Knarr BA; Higginson JS
    J Biomech; 2018 Sep; 78():143-149. PubMed ID: 30078637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.