BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31302468)

  • 21. A novel method to harvest Chlorella sp. by co-flocculation/air flotation.
    Zhang H; Lin Z; Tan D; Liu C; Kuang Y; Li Z
    Biotechnol Lett; 2017 Jan; 39(1):79-84. PubMed ID: 27654824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): transformation kinetics and products identification.
    Peng FQ; Ying GG; Yang B; Liu S; Lai HJ; Liu YS; Chen ZF; Zhou GJ
    Chemosphere; 2014 Jan; 95():581-8. PubMed ID: 24182402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome sequencing, assembly, and annotation of the self-flocculating microalga Scenedesmus obliquus AS-6-11.
    Chen BL; Mhuantong W; Ho SH; Chang JS; Zhao XQ; Bai FW
    BMC Genomics; 2020 Oct; 21(1):743. PubMed ID: 33109102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Harvesting Chlorella vulgaris by magnetic flocculation using Fe₃O₄ coating with polyaluminium chloride and polyacrylamide.
    Zhao Y; Liang W; Liu L; Li F; Fan Q; Sun X
    Bioresour Technol; 2015 Dec; 198():789-96. PubMed ID: 26454365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of silica coated magnetic nanoparticle on cell flocculation, lipid extraction and linoleic acid production from
    Vashist V; Chauhan D; Bhattacharya A; Rai MP
    Nat Prod Res; 2020 Oct; 34(19):2852-2856. PubMed ID: 31081364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel non-starch based cationic polymer as flocculant for harvesting microalgae.
    Kumar N; Banerjee C; Kumar N; Jagadevan S
    Bioresour Technol; 2019 Jan; 271():383-390. PubMed ID: 30296745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa.
    Xiong Q; Liu YS; Hu LX; Shi ZQ; Cai WW; He LY; Ying GG
    Water Res; 2020 May; 175():115656. PubMed ID: 32145399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Green coagulants recovering Scenedesmus obliquus: An optimization study.
    Dias A; Borges AC; Rosa AP; Martins MA
    Chemosphere; 2021 Jan; 262():127881. PubMed ID: 32795709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polyethyleneimine as a tool for compounds fractionation by flocculation in a microalgae biorefinery context.
    Ba F; Foissard A; Lebert A; Djelveh G; Laroche C
    Bioresour Technol; 2020 Nov; 315():123857. PubMed ID: 32707508
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Chlorella vulgaris and Scenedesmus obliquus growth on pretreated organic solid waste digestate.
    Scarponi P; Volpi Ghirardini AM; Bravi M; Cavinato C
    Waste Manag; 2021 Jan; 119():235-241. PubMed ID: 33075620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Edible fungi-assisted harvesting system for efficient microalgae bio-flocculation.
    Luo S; Wu X; Jiang H; Yu M; Liu Y; Min A; Li W; Ruan R
    Bioresour Technol; 2019 Jun; 282():325-330. PubMed ID: 30877913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microalgal interstrains differences in algal-bacterial biofloc formation during liquid digestate treatment.
    Wang H; Qi B; Jiang X; Jiang Y; Yang H; Xiao Y; Jiang N; Deng L; Wang W
    Bioresour Technol; 2019 Oct; 289():121741. PubMed ID: 31323710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Buoy-bead flotation harvesting of the microalgae Chlorella vulgaris using surface-layered polymeric microspheres: A novel approach.
    Xu K; Zou X; Wen H; Xue Y; Zhao S; Li Y
    Bioresour Technol; 2018 Nov; 267():341-346. PubMed ID: 30029180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Harvesting of freshwater microalgae Scenedesmus sp. by electro-coagulation-flocculation for biofuel production: effects on spent medium recycling and lipid extraction.
    Pandey A; Shah R; Yadav P; Verma R; Srivastava S
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):3497-3507. PubMed ID: 31832955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acidified-flocculation process for harvesting of microalgae: Coagulant reutilization and metal-free-microalgae recovery.
    Kim DY; Lee K; Lee J; Lee YH; Han JI; Park JY; Oh YK
    Bioresour Technol; 2017 Sep; 239():190-196. PubMed ID: 28521228
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.
    Alam MA; Wan C; Guo SL; Zhao XQ; Huang ZY; Yang YL; Chang JS; Bai FW
    J Biosci Bioeng; 2014 Jul; 118(1):29-33. PubMed ID: 24507901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ferrofluid-assisted rapid and directional harvesting of marine microalgal Chlorella sp. used for biodiesel production.
    Ho SH; Chiu SY; Kao CY; Chen TY; Chang YB; Chang JS; Lin CS
    Bioresour Technol; 2017 Nov; 244(Pt 2):1337-1340. PubMed ID: 28576481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flocculation of Chlorella vulgaris by shell waste-derived bioflocculants for biodiesel production: Process optimization, characterization and kinetic studies.
    Suparmaniam U; Lam MK; Uemura Y; Shuit SH; Lim JW; Show PL; Lee KT; Matsumura Y; Le PTK
    Sci Total Environ; 2020 Feb; 702():134995. PubMed ID: 31710849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Harvesting of microalgae by flocculation with poly (γ-glutamic acid).
    Zheng H; Gao Z; Yin J; Tang X; Ji X; Huang H
    Bioresour Technol; 2012 May; 112():212-20. PubMed ID: 22425514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative study between fungal pellet- and spore-assisted microalgae harvesting methods for algae bioflocculation.
    Chen J; Leng L; Ye C; Lu Q; Addy M; Wang J; Liu J; Chen P; Ruan R; Zhou W
    Bioresour Technol; 2018 Jul; 259():181-190. PubMed ID: 29554598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.