These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31302493)

  • 1. Forces acting on the clavicle during shoulder abduction, forward humeral flexion and activities of daily living.
    Hoogervorst P; Bolsterlee B; Pijper M; Aalsma A; Verdonschot N
    Clin Biomech (Bristol, Avon); 2019 Oct; 69():79-86. PubMed ID: 31302493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forces across the middle of the intact clavicle during shoulder motion.
    Iannolo M; Werner FW; Sutton LG; Serell SM; VanValkenburg SM
    J Shoulder Elbow Surg; 2010 Oct; 19(7):1013-7. PubMed ID: 20637655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic function of coracoclavicular ligament at different shoulder abduction angles: a study using a 3-dimensional finite element model.
    Seo YJ; Yoo YS; Noh KC; Song SY; Lee YB; Kim HJ; Kim HY
    Arthroscopy; 2012 Jun; 28(6):778-87. PubMed ID: 22632573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-dimensional regression model of the shoulder rhythm.
    de Groot JH; Brand R
    Clin Biomech (Bristol, Avon); 2001 Nov; 16(9):735-43. PubMed ID: 11714550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo analysis of coracoclavicular ligament kinematics during shoulder abduction.
    Izadpanah K; Weitzel E; Honal M; Winterer J; Vicari M; Maier D; Jaeger M; Kotter E; Hennig J; Weigel M; Südkamp NP
    Am J Sports Med; 2012 Jan; 40(1):185-92. PubMed ID: 21969179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a model for force predictions in the human shoulder.
    Karlsson D; Peterson B
    J Biomech; 1992 Feb; 25(2):189-99. PubMed ID: 1733994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The function of the acromioclavicular and coracoclavicular ligaments in shoulder motion: a whole-cadaver study.
    Oki S; Matsumura N; Iwamoto W; Ikegami H; Kiriyama Y; Nakamura T; Toyama Y; Nagura T
    Am J Sports Med; 2012 Nov; 40(11):2617-26. PubMed ID: 22967825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional clavicular motion during arm elevation: reliability and descriptive data.
    Ludewig PM; Behrens SA; Meyer SM; Spoden SM; Wilson LA
    J Orthop Sports Phys Ther; 2004 Mar; 34(3):140-9. PubMed ID: 15089027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the kinematic and dynamic behavior of the shoulder mechanism.
    van der Helm FC
    J Biomech; 1994 May; 27(5):527-50. PubMed ID: 8027089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of musculoskeletal modelling parameters of the shoulder complex during humeral abduction above 90°.
    Aurbach M; Spicka J; Süß F; Dendorfer S
    J Biomech; 2020 Jun; 106():109817. PubMed ID: 32517973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of plane of arm elevation on glenohumeral kinematics: a normative biplane fluoroscopy study.
    Giphart JE; Brunkhorst JP; Horn NH; Shelburne KB; Torry MR; Millett PJ
    J Bone Joint Surg Am; 2013 Feb; 95(3):238-45. PubMed ID: 23389787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Procedure to describe clavicular motion.
    Gutierrez Delgado G; De Beule M; Ortega Cardentey DR; Segers P; Iznaga Benítez AM; Rodríguez Moliner T; Verhegghe B; Palmans T; Van Hoof T; Van Tongel A
    J Shoulder Elbow Surg; 2017 Mar; 26(3):490-496. PubMed ID: 28081995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Dynamic radiographic evaluation of the antero-inferior gleno-humeral ligament].
    Vuillemin A; Hardy P; Guigui P; Bauer T; Rousselin B; Lortat-Jacob A
    Rev Chir Orthop Reparatrice Appar Mot; 2003 May; 89(3):201-9. PubMed ID: 12844043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Humeral version in reverse shoulder arthroplasty affects impingement in activities of daily living.
    Kontaxis A; Chen X; Berhouet J; Choi D; Wright T; Dines DM; Warren RF; Gulotta LV
    J Shoulder Elbow Surg; 2017 Jun; 26(6):1073-1082. PubMed ID: 28162877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scapular and clavicular kinematics during humeral elevation: a study with cadavers.
    Fung M; Kato S; Barrance PJ; Elias JJ; McFarland EG; Nobuhara K; Chao EY
    J Shoulder Elbow Surg; 2001; 10(3):278-85. PubMed ID: 11408912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the plate location used in clavicle fractures during shoulder abduction and flexion movements: a finite element analysis.
    Calişal E; Uğur L
    Acta Bioeng Biomech; 2018; 20(4):41-46. PubMed ID: 30821281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo gleno-humeral joint loads during forward flexion and abduction.
    Bergmann G; Graichen F; Bender A; Rohlmann A; Halder A; Beier A; Westerhoff P
    J Biomech; 2011 May; 44(8):1543-52. PubMed ID: 21481879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship Between Deltoid and Rotator Cuff Muscles During Dynamic Shoulder Abduction: A Biomechanical Study of Rotator Cuff Tear Progression.
    Dyrna F; Kumar NS; Obopilwe E; Scheiderer B; Comer B; Nowak M; Romeo AA; Mazzocca AD; Beitzel K
    Am J Sports Med; 2018 Jul; 46(8):1919-1926. PubMed ID: 29741391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic characteristics of the scapula and clavicle during military press exercise and shoulder flexion.
    Ichihashi N; Ibuki S; Otsuka N; Takashima S; Matsumura A
    J Shoulder Elbow Surg; 2014 May; 23(5):649-57. PubMed ID: 24439246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between the joints in the shoulder mechanism: the function of the costoclavicular, conoid and trapezoid ligaments.
    Pronk GM; van der Helm FC; Rozendaal LA
    Proc Inst Mech Eng H; 1993; 207(4):219-29. PubMed ID: 7802873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.