These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
639 related articles for article (PubMed ID: 31302511)
1. Holistic decomposition convolution for effective semantic segmentation of medical volume images. Zeng G; Zheng G Med Image Anal; 2019 Oct; 57():149-164. PubMed ID: 31302511 [TBL] [Abstract][Full Text] [Related]
2. OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions. Heinrich MP; Oktay O; Bouteldja N Med Image Anal; 2019 May; 54():1-9. PubMed ID: 30807894 [TBL] [Abstract][Full Text] [Related]
3. An application of cascaded 3D fully convolutional networks for medical image segmentation. Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of multislice inputs to convolutional neural networks for medical image segmentation. Vu MH; Grimbergen G; Nyholm T; Löfstedt T Med Phys; 2020 Dec; 47(12):6216-6231. PubMed ID: 33169365 [TBL] [Abstract][Full Text] [Related]
5. DENSE-INception U-net for medical image segmentation. Zhang Z; Wu C; Coleman S; Kerr D Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817 [TBL] [Abstract][Full Text] [Related]
6. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897 [TBL] [Abstract][Full Text] [Related]
7. Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution. Cai Y; Long Y; Han Z; Liu M; Zheng Y; Yang W; Chen L BMC Med Inform Decis Mak; 2023 Feb; 23(1):33. PubMed ID: 36788560 [TBL] [Abstract][Full Text] [Related]
8. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks. Burton W; Myers C; Rullkoetter P Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580 [TBL] [Abstract][Full Text] [Related]
9. Bridging 2D and 3D segmentation networks for computation-efficient volumetric medical image segmentation: An empirical study of 2.5D solutions. Zhang Y; Liao Q; Ding L; Zhang J Comput Med Imaging Graph; 2022 Jul; 99():102088. PubMed ID: 35780703 [TBL] [Abstract][Full Text] [Related]
10. DRINet for Medical Image Segmentation. Chen L; Bentley P; Mori K; Misawa K; Fujiwara M; Rueckert D IEEE Trans Med Imaging; 2018 Nov; 37(11):2453-2462. PubMed ID: 29993738 [TBL] [Abstract][Full Text] [Related]
11. A multiple-channel and atrous convolution network for ultrasound image segmentation. Zhang L; Zhang J; Li Z; Song Y Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105 [TBL] [Abstract][Full Text] [Related]
12. VSmTrans: A hybrid paradigm integrating self-attention and convolution for 3D medical image segmentation. Liu T; Bai Q; Torigian DA; Tong Y; Udupa JK Med Image Anal; 2024 Dec; 98():103295. PubMed ID: 39217673 [TBL] [Abstract][Full Text] [Related]
13. Fusing 2D and 3D convolutional neural networks for the segmentation of aorta and coronary arteries from CT images. Gu L; Cai XC Artif Intell Med; 2021 Nov; 121():102189. PubMed ID: 34763804 [TBL] [Abstract][Full Text] [Related]
14. Recurrent attention network for false positive reduction in the detection of pulmonary nodules in thoracic CT scans. Farhangi MM; Petrick N; Sahiner B; Frigui H; Amini AA; Pezeshk A Med Phys; 2020 Jun; 47(5):2150-2160. PubMed ID: 32030769 [TBL] [Abstract][Full Text] [Related]
15. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
16. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B; Xing L Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [TBL] [Abstract][Full Text] [Related]
17. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks. Lucena O; Souza R; Rittner L; Frayne R; Lotufo R Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252 [TBL] [Abstract][Full Text] [Related]
18. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Zhou X; Takayama R; Wang S; Hara T; Fujita H Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602 [TBL] [Abstract][Full Text] [Related]
19. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Wang Y; Zhou Y; Shen W; Park S; Fishman EK; Yuille AL Med Image Anal; 2019 Jul; 55():88-102. PubMed ID: 31035060 [TBL] [Abstract][Full Text] [Related]
20. Learning normalized inputs for iterative estimation in medical image segmentation. Drozdzal M; Chartrand G; Vorontsov E; Shakeri M; Di Jorio L; Tang A; Romero A; Bengio Y; Pal C; Kadoury S Med Image Anal; 2018 Feb; 44():1-13. PubMed ID: 29169029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]