These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31302871)

  • 41. Reassessment of structural shielding design in mammography installations.
    Sampaio JM; Abreu MC; Sousa P; Peralta L; Lima PE
    Radiat Prot Dosimetry; 2013 Apr; 154(1):45-51. PubMed ID: 22972798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of ITO and ZnO ternary glassy composites in terms of radiation shielding properties by Monte Carlo N-particle transport code and BXCOM.
    Toker O; Bilmez B; Kavanoz HB; Akçalı Ö; İçelli O
    Radiat Environ Biophys; 2020 May; 59(2):283-293. PubMed ID: 32193598
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Building protection- and building shielding-factors for environmental exposure to radionuclides and monoenergetic photon emissions.
    Dickson ED; Hamby DM
    J Radiol Prot; 2016 Sep; 36(3):579-615. PubMed ID: 27460970
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lead-free transparent shields for diagnostic X-rays: Monte Carlo simulation and measurements.
    Karimi M; Ghazikhanlou-Sani K; Mehdizadeh AR; Mostaghimi H
    Radiol Phys Technol; 2020 Sep; 13(3):276-287. PubMed ID: 32785874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparative Monte Carlo simulation study on shielding features of the CaF
    Isazadeh F; Abdi Saray A
    Sci Rep; 2024 Jun; 14(1):13588. PubMed ID: 38866863
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flexible stretchable low-energy X-ray (30-80 keV) radiation shielding material: Low-melting-point Ga
    Wu J; Hu J; Wang K; Zhai Y; Wang Z; Feng Y; Fan H; Wang K; Duan Y
    Appl Radiat Isot; 2023 Feb; 192():110603. PubMed ID: 36508958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Calculation of conversion coefficients for air kerma to ambient dose equivalent using transmitted spectra of megavoltage X-rays through concrete.
    Cordeiro TP; Silva AX
    Radiat Prot Dosimetry; 2012 Dec; 152(4):455-62. PubMed ID: 22683619
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.
    Chofor N; Harder D; Willborn K; Rühmann A; Poppe B
    Z Med Phys; 2011 Sep; 21(3):183-97. PubMed ID: 21530198
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves.
    Faddegon BA; Villarreal-Barajas JE
    Med Phys; 2005 Nov; 32(11):3286-94. PubMed ID: 16370417
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Patient-specific Monte Carlo dose calculations for high-dose-rate endorectal brachytherapy with shielded intracavitary applicator.
    Poon E; Williamson JF; Vuong T; Verhaegen F
    Int J Radiat Oncol Biol Phys; 2008 Nov; 72(4):1259-66. PubMed ID: 18954720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Effective dose transmission of diagnostic X-rays through concrete and lead shields].
    Kato H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2003 Aug; 59(8):965-75. PubMed ID: 12960950
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology.
    Malekzadeh R; Mehnati P; Sooteh MY; Mesbahi A
    Radiol Phys Technol; 2019 Sep; 12(3):325-334. PubMed ID: 31385155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of shielding materials in a Compton spectrometer applied to x-ray tube quality control using Monte Carlo simulation.
    Gallardo S; Ródenas J; Verdú G; Villaescusa JI
    Radiat Prot Dosimetry; 2005; 115(1-4):375-9. PubMed ID: 16381749
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A photon source model based on particle transport in a parameterized accelerator structure for Monte Carlo dose calculations.
    Ishizawa Y; Dobashi S; Kadoya N; Ito K; Chiba T; Takayama Y; Sato K; Takeda K
    Med Phys; 2018 Jul; 45(7):2937-2946. PubMed ID: 29772081
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A three-dimensional computed tomography-assisted Monte Carlo evaluation of ovoid shielding on the dose to the bladder and rectum in intracavitary radiotherapy for cervical cancer.
    Gifford KA; Horton JL; Pelloski CE; Jhingran A; Court LE; Mourtada F; Eifel PJ
    Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):615-21. PubMed ID: 16168853
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Protection of eye lens in computed tomography--dose evaluation on an anthropomorphic phantom using thermo-luminescent dosimeters and Monte-Carlo simulations].
    Keil B; Wulff J; Schmitt R; Auvanis D; Danova D; Heverhagen JT; Fiebich M; Madsack B; Leppek R; Klose KJ; Zink K
    Rofo; 2008 Dec; 180(12):1047-53. PubMed ID: 19235699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. VMC++ validation for photon beams in the energy range of 20-1000 keV.
    Terribilini D; Fix MK; Frei D; Volken W; Manser P
    Med Phys; 2010 Oct; 37(10):5218-27. PubMed ID: 21089755
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Radial dose distribution, dose to water and dose rate constant for monoenergetic photon point sources from 10 keV to 2 MeV:EGS4 Monte Carlo model calculation.
    Luxton G; Jozsef G
    Med Phys; 1999 Dec; 26(12):2531-8. PubMed ID: 10619236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimation of the dose at the maze entrance for x-rays from radiotherapy linear accelerators.
    Al-Affan IA
    Med Phys; 2000 Jan; 27(1):231-8. PubMed ID: 10659762
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Portal MV imaging with thin-film high-energy current X-ray detectors: A Monte Carlo study.
    Liu B; Zygmanski P; Sajo E
    Med Phys; 2017 Dec; 44(12):6128-6137. PubMed ID: 28976578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.