These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31302887)

  • 21. Characteristics of the microwave pyrolysis and microwave CO
    Chun YN; Jeong BR
    Environ Technol; 2018 Oct; 39(19):2484-2494. PubMed ID: 28726561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heavy metal stabilization and improved biochar generation via pyrolysis of hydrothermally treated sewage sludge with antibiotic mycelial residue.
    Li C; Xie S; You F; Zhu X; Li J; Xu X; Yu G; Wang Y; Angelidaki I
    Waste Manag; 2021 Jan; 119():152-161. PubMed ID: 33065336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of lightweight aggregate from dry sewage sludge and coal ash.
    Wang X; Jin Y; Wang Z; Nie Y; Huang Q; Wang Q
    Waste Manag; 2009 Apr; 29(4):1330-5. PubMed ID: 19008090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals.
    Jin J; Wang M; Cao Y; Wu S; Liang P; Li Y; Zhang J; Zhang J; Wong MH; Shan S; Christie P
    Bioresour Technol; 2017 Mar; 228():218-226. PubMed ID: 28064134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive utilization of the pyrolysis products from sewage sludge.
    Xu WY; Wu D
    Environ Technol; 2015; 36(13-16):1731-44. PubMed ID: 25609547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge.
    Tsai CC; Wang KS; Chiou IJ
    J Hazard Mater; 2006 Jun; 134(1-3):87-93. PubMed ID: 16386840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge.
    Domínguez A; Fernández Y; Fidalgo B; Pis JJ; Menéndez JA
    Chemosphere; 2008 Jan; 70(3):397-403. PubMed ID: 17692361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating.
    Domínguez A; Menéndez JA; Inguanzo M; Pís JJ
    Bioresour Technol; 2006 Jul; 97(10):1185-93. PubMed ID: 16473008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen-rich gas production via fast pyrolysis of biophysical dried sludge: Effect of particle size and moisture content on product yields and syngas composition.
    Han R; Liu J; Zhao C; Li Y; Chen A
    Waste Manag Res; 2016 Jun; 34(6):572-7. PubMed ID: 27118735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-pyrolysis of sewage sludge/cotton stalks with K
    Wang Z; Tian Q; Guo J; Wu R; Zhu H; Zhang H
    Waste Manag; 2021 Nov; 135():199-207. PubMed ID: 34520992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil.
    Kim Y; Parker W
    Bioresour Technol; 2008 Mar; 99(5):1409-16. PubMed ID: 17383872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combustion and emission analysis of hydrogenated waste polypropylene pyrolysis oil blended with diesel.
    Mangesh VL; Padmanabhan S; Tamizhdurai P; Narayanan S; Ramesh A
    J Hazard Mater; 2020 Mar; 386():121453. PubMed ID: 31928791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partial oxidation of sewage sludge briquettes in a updraft fixed bed.
    Kim M; Lee Y; Park J; Ryu C; Ohm TI
    Waste Manag; 2016 Mar; 49():204-211. PubMed ID: 26860426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modification of hydro-chars by non-thermal plasma to enhance co-anaerobic digestion and degradation of sewage sludge pyrolysis oil.
    An Q; Chen D; Chen H; Yue X; Wang L
    J Environ Manage; 2022 Apr; 307():114531. PubMed ID: 35078068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.
    Samolada MC; Zabaniotou AA
    Waste Manag; 2014 Feb; 34(2):411-20. PubMed ID: 24290971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Char from the co-pyrolysis of Eucalyptus wood and low-density polyethylene for use as high-quality fuel: Influence of process parameters.
    Samal B; Vanapalli KR; Dubey BK; Bhattacharya J; Chandra S; Medha I
    Sci Total Environ; 2021 Nov; 794():148723. PubMed ID: 34217075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microwave pyrolysis of oily sludge with activated carbon.
    Chen YR
    Environ Technol; 2016 Dec; 37(24):3139-45. PubMed ID: 27133358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reforming sewage sludge pyrolysis volatile with Fe-embedded char: Minimization of liquid product yield.
    Yu G; Chen D; Arena U; Huang Z; Dai X
    Waste Manag; 2018 Mar; 73():464-475. PubMed ID: 28803146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge.
    Zuo W; Tian Y; Ren N
    Waste Manag; 2011 Jun; 31(6):1321-6. PubMed ID: 21353518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Screw pyrolysis technology for sewage sludge treatment.
    Tomasi Morgano M; Leibold H; Richter F; Stapf D; Seifert H
    Waste Manag; 2018 Mar; 73():487-495. PubMed ID: 28601579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.