These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31302998)

  • 1. Electrochromic Photodetectors: Toward Smarter Glasses and Nano Reflective Displays via an Electrolytic Mechanism.
    Hai Z; Karbalaei Akbari M; Wei Z; Zuallaert J; De Neve W; Xue C; Xu H; Verpoort F; Zhuiykov S
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27997-28004. PubMed ID: 31302998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tungsten Trioxide Doped with CdSe Quantum Dots for Smart Windows.
    Hasani A; Le QV; Tekalgne M; Guo W; Hong SH; Choi KS; Lee TH; Jang HW; Kim SY
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43785-43791. PubMed ID: 30474953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Various Coating Methodologies of WO
    Kim KW; Kim YM; Li X; Ha T; Kim SH; Moon HC; Lee SW
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32344874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Coloration Time of Electrochromic Device Using Integrated WO
    Kwon H; Kim S; Ham M; Park Y; Kim H; Lee W; Lee H
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White.
    Bi Z; Li X; Chen Y; He X; Xu X; Gao X
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29872-29880. PubMed ID: 28809104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data on characterization and electrochemical analysis of zinc oxide and tungsten trioxide as counter electrodes for electrochromic devices.
    Pham NS; Seo YH; Park E; Nguyen TDD; Shin IS
    Data Brief; 2020 Aug; 31():105891. PubMed ID: 32637497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonconventional Symmetric Double-Side Electrochromic Devices Employing a Nafion Conductive Layer to Unlock Superior Durability.
    DiPalo VA; Ahmad R; Ebralidze II; Mapue ND; Easton EB; Zenkina OV
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1082-1095. PubMed ID: 38148284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rechargeable Aqueous Electrochromic Batteries Utilizing Ti-Substituted Tungsten Molybdenum Oxide Based Zn
    Li H; McRae L; Firby CJ; Elezzabi AY
    Adv Mater; 2019 Apr; 31(15):e1807065. PubMed ID: 30803069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From waste carbonated beverages to high performance electrochromic devices: a green and low-cost synthetic method for self-doped metal oxides.
    Wu L; Fang H; Jing K; Yu H; Shan Z
    Nanoscale; 2023 Nov; 15(43):17455-17463. PubMed ID: 37859603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Powered Rewritable Electrochromic Display based on WO
    Wu W; Fang H; Ma H; Wu L; Wang Q; Wang H
    ACS Appl Mater Interfaces; 2021 May; 13(17):20326-20335. PubMed ID: 33881294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of In Situ Heating on the Growth and Electrochromic Properties of Tungsten Trioxide Thin Films.
    Xu J; Li X; Zhang Y; Zhang X; Liu J; Wu Y
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-Color-Tunable Nanophotonic Device Using Electrochromic Tungsten Trioxide Thin Film.
    Lee Y; Yun J; Seo M; Kim SJ; Oh J; Kang CM; Sun HJ; Chung TD; Lee B
    Nano Lett; 2020 Aug; 20(8):6084-6090. PubMed ID: 32603122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-Tunable Dual Image of Electrostatic Force-Assisted Dispensing Printed, Tungsten Trioxide-Based Electrochromic Devices with a Symmetric Configuration.
    Li X; Yun TY; Kim KW; Kim SH; Moon HC
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4022-4030. PubMed ID: 31880422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Stability Enhancement of Electrochromic Tungsten Oxide by Self-Assembly of a Phosphonate Protection Layer.
    Hopmann E; Elezzabi AY
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1930-1936. PubMed ID: 31818104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next-Generation Multifunctional Electrochromic Devices.
    Cai G; Wang J; Lee PS
    Acc Chem Res; 2016 Aug; 49(8):1469-76. PubMed ID: 27404116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Transparent Conductive Reduced Graphene Oxide/Silver Nanowires/Silver Grid Electrodes for Low-Voltage Electrochromic Smart Windows.
    Mallikarjuna K; Kim H
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1969-1978. PubMed ID: 30571910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast switching of an electrochromic device based on layered double hydroxide/Prussian blue multilayered films.
    Liu X; Zhou A; Dou Y; Pan T; Shao M; Han J; Wei M
    Nanoscale; 2015 Oct; 7(40):17088-95. PubMed ID: 26420230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox Potential Based Self-Powered Electrochromic Devices for Smart Windows.
    Ganesha MK; Hakkeem H; Singh AK
    Small; 2024 Oct; 20(42):e2403156. PubMed ID: 38874058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Electrochromic Devices Based on Size-Controlled 2D WO
    Li CA; Ko B; Park KH; Ahn JG; Park T; Lee DJ; Song SH
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards an All-Solid-State Electrochromic Device: A Review of Solid-State Electrolytes and the Way Forward.
    Au BW; Chan KY
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35746035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.