These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 3130339)

  • 21. Contribution of larval nutrition to adult reproduction in Drosophila melanogaster.
    Aguila JR; Hoshizaki DK; Gibbs AG
    J Exp Biol; 2013 Feb; 216(Pt 3):399-406. PubMed ID: 23038728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drosophila melanogaster larvae make nutritional choices that minimize developmental time.
    Rodrigues MA; Martins NE; Balancé LF; Broom LN; Dias AJ; Fernandes AS; Rodrigues F; Sucena É; Mirth CK
    J Insect Physiol; 2015 Oct; 81():69-80. PubMed ID: 26149766
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short-term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae.
    Rajamohan A; Sinclair BJ
    J Insect Physiol; 2008 Apr; 54(4):708-18. PubMed ID: 18342328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila melanogaster.
    Callier V; Shingleton AW; Brent CS; Ghosh SM; Kim J; Harrison JF
    J Exp Biol; 2013 Dec; 216(Pt 23):4334-40. PubMed ID: 24259256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selection for desiccation resistance in adult Drosophila melanogaster affects larval development and metabolite accumulation.
    Gefen E; Marlon AJ; Gibbs AG
    J Exp Biol; 2006 Sep; 209(Pt 17):3293-300. PubMed ID: 16916965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring the effect of pathogenic nematodes on locomotion of Drosophila larvae.
    Kunc M; Arefin B; Hyrsl P; Theopold U
    Fly (Austin); 2017 Jul; 11(3):208-217. PubMed ID: 28631995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drosophila C virus cycle during the development of two Drosophila melanogaster strains (Charolles and Champetières) after larval contamination by food.
    Lautié-Harivel N
    Biol Cell; 1992; 76(2):151-7. PubMed ID: 1300196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drosophila adult and larval pheromones modulate larval food choice.
    Farine JP; Cortot J; Ferveur JF
    Proc Biol Sci; 2014 Jun; 281(1784):20140043. PubMed ID: 24741012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature dependent larval resource allocation shaping adult body size in Drosophila melanogaster.
    Bochdanovits Z; De Jong G
    J Evol Biol; 2003 Nov; 16(6):1159-67. PubMed ID: 14640407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developmental changes in Drosophila melanogaster following exposure to alternating electromagnetic fields.
    Mirabolghasemi G; Azarnia M
    Bioelectromagnetics; 2002 Sep; 23(6):416-20. PubMed ID: 12210559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutations in the larval foraging gene affect adult locomotory behavior after feeding in Drosophila melanogaster.
    Pereira HS; Sokolowski MB
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5044-6. PubMed ID: 8506349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic analysis of larval competition in Drosophila melanogaster.
    de Miranda JR; Eggleston P
    Heredity (Edinb); 1988 Dec; 61 ( Pt 3)():339-46. PubMed ID: 3147977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells.
    Basak AK; Chatterjee T; Chakravarty A; Ghosh SK
    Environ Monit Assess; 2019 Jul; 191(8):497. PubMed ID: 31312907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Method of selection of synchronously developing larvae of Drosophila melanogaster].
    Zhimulev IF; Kolesnikov NN
    Ontogenez; 1975; 6(6):635-9. PubMed ID: 821028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The competition diallel and the exploitation and interference components of larval competition in Drosophila melanogaster.
    De Miranda JR; Hemmat M; Eggleston P
    Heredity (Edinb); 1991 Jun; 66 ( Pt 3)():333-42. PubMed ID: 1908839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary change in parasitoid resistance under crowded conditions in Drosophila melanogaster.
    Sanders AE; Scarborough C; Layen SJ; Kraaijeveld AR; Godfray HC
    Evolution; 2005 Jun; 59(6):1292-9. PubMed ID: 16050105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developmental analysis of Ganaspis xanthopoda, a larval parasitoid of Drosophila melanogaster.
    Melk JP; Govind S
    J Exp Biol; 1999 Jul; 202(Pt 14):1885-96. PubMed ID: 10377270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological responses of insects to microbial fermentation products: Insights from the interactions between Drosophila and acetic acid.
    Kim G; Huang JH; McMullen JG; Newell PD; Douglas AE
    J Insect Physiol; 2018 Apr; 106(Pt 1):13-19. PubMed ID: 28522417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An automated method to assay locomotor activity in third instar Drosophila melanogaster larvae.
    Graham S; Rogers RP; Alper RH
    J Pharmacol Toxicol Methods; 2016; 77():76-80. PubMed ID: 26554339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of dominance for competitive ability in Drosophila melanogaster.
    de Miranda JR; Eggleston P
    Heredity (Edinb); 1989 Oct; 63 ( Pt 2)():221-9. PubMed ID: 2509405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.