These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3130370)

  • 1. Effect of mechanical load on tidal volume during high-frequency jet ventilation.
    Berdine GG; Strollo PJ
    J Appl Physiol (1985); 1988 Mar; 64(3):1217-22. PubMed ID: 3130370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High frequency jet ventilation: the influence of gas flow, inspiration time and ventilatory frequency on gas transport in healthy anaesthetized dogs.
    Spoelstra AJ; Tamsma TJ
    Br J Anaesth; 1987 Oct; 59(10):1298-308. PubMed ID: 3118928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas flow distribution and tidal volume during distal high frequency jet ventilation in dogs.
    Tamsma TJ; Spoelstra AJ
    Acta Anaesthesiol Scand Suppl; 1989; 90():75-8. PubMed ID: 2929266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of entrainment ratio during high frequency jet ventilation.
    Jones MJ; Mottram SD; Lin ES; Smith G
    Br J Anaesth; 1990 Aug; 65(2):197-203. PubMed ID: 2223336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary mechanics of dogs during transtracheal jet ventilation.
    Carl ML; Rhee KJ; Schelegle ES; Green JF
    Ann Emerg Med; 1994 Dec; 24(6):1126-36. PubMed ID: 7978595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heliox does not affect gas exchange during high-frequency oscillatory ventilation if tidal volume is held constant.
    Katz AL; Gentile MA; Craig DM; Quick G; Cheifetz IM
    Crit Care Med; 2003 Jul; 31(7):2006-9. PubMed ID: 12847396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase of the oxygenation and decrease of the intrapulmonary peak pressure at constant mean airway pressure using high-frequency jet ventilation in adult rabbits with lavage-induced severe respiratory distress syndrome compared to conventional mechanical ventilation.
    Merker G; Jarke D; Oddoy A; Böhnke J
    Z Erkr Atmungsorgane; 1989; 172(3):282-91. PubMed ID: 2508337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow dynamics using high-frequency jet ventilation in a model of bronchopleural fistula.
    Wood MJ; Lin ES; Thompson JP
    Br J Anaesth; 2014 Feb; 112(2):355-66. PubMed ID: 24172056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High frequency jet ventilation in horses: an experimental study.
    Dunlop CI; Hodgson DS; Watson JW; Gillespie JR; Steffey EP; Jackson AC
    Equine Vet J; 1989 Sep; 21(5):342-6. PubMed ID: 2506008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas flow distribution in distal high frequency jet ventilation and lung thorax compliance.
    Spoelstra AJ; Tamsma TJ
    Acta Anaesthesiol Scand; 1991 Nov; 35(8):717-24. PubMed ID: 1763591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of arterial PCO2 during high frequency jet ventilation. Studies in the dog.
    Mortimer AJ; Cannon DP; Sykes MK
    Br J Anaesth; 1987 Feb; 59(2):240-6. PubMed ID: 3103660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isocapnic high frequency jet ventilation: dead space depends on frequency, inspiratory time and entrainment.
    Fletcher R; Malmkvist G; Lührs C; Mori N; Drefeldt B; Brauer K; Jonsson B
    Acta Anaesthesiol Scand; 1991 Feb; 35(2):153-8. PubMed ID: 2024565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of spontaneous breathing during high-frequency jet ventilation. Separate effects of lung volume and jet frequency.
    van Vught AJ; Versprille A; Jansen JR
    Intensive Care Med; 1987; 13(5):315-22. PubMed ID: 3116059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of mean airway pressure on gas transport during high-frequency ventilation in dogs.
    Yamada Y; Venegas JG; Strieder DJ; Hales CA
    J Appl Physiol (1985); 1986 Nov; 61(5):1896-902. PubMed ID: 3096948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of end-tidal carbon dioxide partial pressure during high frequency jet ventilation.
    Sehati S; Young JD; Sykes MK; McLeod CN
    Br J Anaesth; 1989; 63(7 Suppl 1):47S-52S. PubMed ID: 2514780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency dependence of dead space during high-frequency ventilation in dogs.
    Fletcher PR; Epstein RA
    Respir Physiol; 1986 Feb; 63(2):213-25. PubMed ID: 3083489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon dioxide clearance during high frequency jet ventilation. Effect of deadspace in a lung model.
    Mortimer AJ; Bourgain JL; Uppington J; Sykes MK
    Br J Anaesth; 1986 Dec; 58(12):1404-13. PubMed ID: 3098268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventilation by high-frequency chest wall compression in dogs with normal lungs.
    Zidulka A; Gross D; Minami H; Vartian V; Chang HK
    Am Rev Respir Dis; 1983 Jun; 127(6):709-13. PubMed ID: 6407373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency dependence of lung volume changes during superimposed high-frequency jet ventilation and high-frequency jet ventilation.
    Sütterlin R; Priori R; Larsson A; LoMauro A; Frykholm P; Aliverti A
    Br J Anaesth; 2014 Jan; 112(1):141-9. PubMed ID: 23963714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of graded upper-airway obstruction on pulmonary mechanics during transtracheal jet ventilation in dogs.
    Carl ML; Rhee KJ; Schelegle ES; Green JF
    Ann Emerg Med; 1994 Dec; 24(6):1137-43. PubMed ID: 7978596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.