These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31303890)

  • 1. Automatic segmentation and measurement methods of living stomata of plants based on the CV model.
    Li K; Huang J; Song W; Wang J; Lv S; Wang X
    Plant Methods; 2019; 15():67. PubMed ID: 31303890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscope image based fully automated stomata detection and pore measurement method for grapevines.
    Jayakody H; Liu S; Whitty M; Petrie P
    Plant Methods; 2017; 13():94. PubMed ID: 29151841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. StomataScorer: a portable and high-throughput leaf stomata trait scorer combined with deep learning and an improved CV model.
    Liang X; Xu X; Wang Z; He L; Zhang K; Liang B; Ye J; Shi J; Wu X; Dai M; Yang W
    Plant Biotechnol J; 2022 Mar; 20(3):577-591. PubMed ID: 34717024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Deep Learning Method for Fully Automatic Stomatal Morphometry and Maximal Conductance Estimation.
    Gibbs JA; Mcausland L; Robles-Zazueta CA; Murchie EH; Burgess AJ
    Front Plant Sci; 2021; 12():780180. PubMed ID: 34925424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating Automated Stomata Analysis Through Simplified Sample Collection and Imaging Techniques.
    Millstead L; Jayakody H; Patel H; Kaura V; Petrie PR; Tomasetig F; Whitty M
    Front Plant Sci; 2020; 11():580389. PubMed ID: 33101348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generalised approach for high-throughput instance segmentation of stomata in microscope images.
    Jayakody H; Petrie P; Boer HJ; Whitty M
    Plant Methods; 2021 Mar; 17(1):27. PubMed ID: 33750422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Learning-Based Method for Automatic Assessment of Stomatal Index in Wheat Microscopic Images of Leaf Epidermis.
    Zhu C; Hu Y; Mao H; Li S; Li F; Zhao C; Luo L; Liu W; Yuan X
    Front Plant Sci; 2021; 12():716784. PubMed ID: 34539710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A level set method based on domain transformation and bias correction for MRI brain tumor segmentation.
    Khosravanian A; Rahmanimanesh M; Keshavarzi P; Mozaffari S
    J Neurosci Methods; 2021 Mar; 352():109091. PubMed ID: 33515604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Stomatal Segmentation Based on Delaunay-Rayleigh Frequency Distance.
    Carrasco M; Toledo PA; Velázquez R; Bruno OM
    Plants (Basel); 2020 Nov; 9(11):. PubMed ID: 33233729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Integrated Method for Tracking and Monitoring Stomata Dynamics from Microscope Videos.
    Sun Z; Song Y; Li Q; Cai J; Wang X; Zhou Q; Huang M; Jiang D
    Plant Phenomics; 2021; 2021():9835961. PubMed ID: 34250505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential role of ethylene and hydrogen peroxide in dark-induced stomatal closure.
    Kar RK; Parvin N; Laha D
    Pak J Biol Sci; 2013 Dec; 16(24):1991-6. PubMed ID: 24517017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance Analysis of a Novel Hybrid Segmentation Method for Polycystic Ovarian Syndrome Monitoring.
    Nazarudin AA; Zulkarnain N; Mokri SS; Zaki WMDW; Hussain A; Ahmad MF; Nordin INAM
    Diagnostics (Basel); 2023 Feb; 13(4):. PubMed ID: 36832237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Transfer Learning-Based Multi-Object Detection for Plant Stomata Phenotypic Traits Intelligent Recognition.
    Yang XH; Xi ZJ; Li JP; Feng XL; Zhu XH; Guo SY; Song CP
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):321-329. PubMed ID: 34941519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semantic segmentation with DenseNets for carotid artery ultrasound plaque segmentation and CIMT estimation.
    Vila MDM; Remeseiro B; Grau M; Elosua R; Betriu À; Fernandez-Giraldez E; Igual L
    Artif Intell Med; 2020 Mar; 103():101784. PubMed ID: 32143791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LeafNet: a tool for segmenting and quantifying stomata and pavement cells.
    Li S; Li L; Fan W; Ma S; Zhang C; Kim JC; Wang K; Russinova E; Zhu Y; Zhou Y
    Plant Cell; 2022 Mar; 34(4):1171-1188. PubMed ID: 35080620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network.
    He Y; Qin W; Wu Y; Zhang M; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    J Xray Sci Technol; 2020; 28(3):541-553. PubMed ID: 32176675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic renal lesion segmentation in ultrasound images based on saliency features, improved LBP, and an edge indicator under level set framework.
    Gui L; Yang X
    Med Phys; 2018 Jan; 45(1):223-235. PubMed ID: 29131363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Human Dendritic Cells Segmentation Using K-Means Clustering and Chan-Vese Active Contour Model.
    Braiki M; Benzinou A; Nasreddine K; Hymery N
    Comput Methods Programs Biomed; 2020 Oct; 195():105520. PubMed ID: 32497772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain Tumor Segmentation Based on Bendlet Transform and Improved Chan-Vese Model.
    Meng K; Cattani P; Villecco F
    Entropy (Basel); 2022 Aug; 24(9):. PubMed ID: 36141085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. StomataCounter: a neural network for automatic stomata identification and counting.
    Fetter KC; Eberhardt S; Barclay RS; Wing S; Keller SR
    New Phytol; 2019 Aug; 223(3):1671-1681. PubMed ID: 31059134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.