These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31303974)

  • 1. Interfaces Between Alpha-helical Integral Membrane Proteins: Characterization, Prediction, and Docking.
    Li B; Mendenhall J; Meiler J
    Comput Struct Biotechnol J; 2019; 17():699-711. PubMed ID: 31303974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Prediction of Contact Numbers for Multi-Spanning Helical Membrane Proteins.
    Li B; Mendenhall J; Nguyen ED; Weiner BE; Fischer AW; Meiler J
    J Chem Inf Model; 2016 Feb; 56(2):423-34. PubMed ID: 26804342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marker residue types at the structural regions of transmembrane alpha-helical and beta-barrel interfaces.
    Beytur S
    Proteins; 2021 Sep; 89(9):1145-1157. PubMed ID: 33890696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data.
    Chen H; Zhou HX
    Proteins; 2005 Oct; 61(1):21-35. PubMed ID: 16080151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-protein interfaces are vdW dominant with selective H-bonds and (or) electrostatics towards broad functional specificity.
    Nilofer C; Sukhwal A; Mohanapriya A; Kangueane P
    Bioinformation; 2017; 13(6):164-173. PubMed ID: 28729757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residue co-evolution helps predict interaction sites in α-helical membrane proteins.
    Zeng B; Hönigschmid P; Frishman D
    J Struct Biol; 2019 May; 206(2):156-169. PubMed ID: 30836197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving prediction of helix-helix packing in membrane proteins using predicted contact numbers as restraints.
    Li B; Mendenhall J; Nguyen ED; Weiner BE; Fischer AW; Meiler J
    Proteins; 2017 Jul; 85(7):1212-1221. PubMed ID: 28263405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate refinement of docked protein complexes using evolutionary information and deep learning.
    Akbal-Delibas B; Farhoodi R; Pomplun M; Haspel N
    J Bioinform Comput Biol; 2016 Jun; 14(3):1642002. PubMed ID: 26846813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ranking Docked Models of Protein-Protein Complexes Using Predicted Partner-Specific Protein-Protein Interfaces: A Preliminary Study.
    Xue LC; Jordan RA; El-Manzalawy Y; Dobbs D; Honavar V
    ACM BCB; 2011 Aug; 2011():441-445. PubMed ID: 25905110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors.
    Xiao F; Shen HB
    J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of rotational orientation of transmembrane helical segments of integral membrane proteins using new environment-based propensities for amino acids derived from structural analyses.
    Dastmalchi S; Beheshti S; Morris MB; Church WB
    FEBS J; 2007 May; 274(10):2653-60. PubMed ID: 17451441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance-based reconstruction of protein quaternary structures from inter-chain contacts.
    Soltanikazemi E; Quadir F; Roy RS; Guo Z; Cheng J
    Proteins; 2022 Mar; 90(3):720-731. PubMed ID: 34716620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of secondary structural content of proteins from their amino acid composition alone. I. New analytic vector decomposition methods.
    Eisenhaber F; Imperiale F; Argos P; Frömmel C
    Proteins; 1996 Jun; 25(2):157-68. PubMed ID: 8811732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using restraints in EROS-DOCK improves model quality in pairwise and multicomponent protein docking.
    Ruiz Echartea ME; Ritchie DW; Chauvot de Beauchêne I
    Proteins; 2020 Aug; 88(8):1121-1128. PubMed ID: 32506478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein docking using surface matching and supervised machine learning.
    Bordner AJ; Gorin AA
    Proteins; 2007 Aug; 68(2):488-502. PubMed ID: 17444516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete structural features among interface residue-level classes.
    Sowmya G; Ranganathan S
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S8. PubMed ID: 26679043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Great interactions: How binding incorrect partners can teach us about protein recognition and function.
    Vamparys L; Laurent B; Carbone A; Sacquin-Mora S
    Proteins; 2016 Oct; 84(10):1408-21. PubMed ID: 27287388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of interfacial solvent in protein complexes and contribution of wet spots to the interface description.
    Teyra J; Pisabarro MT
    Proteins; 2007 Jun; 67(4):1087-95. PubMed ID: 17397062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.