These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 313042)

  • 1. Timing of bilateral cerebellar output evoked by unilateral vestibular stimulation in the frog.
    Dieringer N; Precht W
    Pflugers Arch; 1979 May; 380(1):79-84. PubMed ID: 313042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of compensation for vestibular deficits in the frog. II. Modification of the inhibitory Pathways.
    Dieringer N; Precht W
    Exp Brain Res; 1979 Jul; 36(2):329-357. PubMed ID: 314903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climbing fibers mediate vestibular modulation of both "complex" and "simple spikes" in Purkinje cells.
    Barmack NH; Yakhnitsa V
    Cerebellum; 2015 Oct; 14(5):597-612. PubMed ID: 26424151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebellar control of vestibular neurons of the frog.
    Magherini PC; Giretti ML; Precht W
    Pflugers Arch; 1975 Apr; 356(2):99-109. PubMed ID: 1080272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog.
    Cochran SL; Kasik P; Precht W
    Synapse; 1987; 1(1):102-23. PubMed ID: 2850617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanism for type III vestibular responses of frog cerebellar Purkinje cells.
    Blanks RH; Precht W
    Brain Res; 1978 Jul; 150(2):295-306. PubMed ID: 307975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellar Purkinje cell responses to physiological stimulation of the vestibular system in the frog.
    Llinás R; Precht W; Clarke M
    Exp Brain Res; 1971 Oct; 13(4):408-31. PubMed ID: 5315935
    [No Abstract]   [Full Text] [Related]  

  • 8. Transient direct connection of vestibular mossy fibers to the vestibulocerebellar Purkinje cells in early postnatal development of kittens.
    Takeda T; Maekawa K
    Neuroscience; 1989; 32(1):99-111. PubMed ID: 2586754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mossy fiber projections to the cerebellar flocculus from the extraocular muscle afferents.
    Maekawa K; Kimura M
    Brain Res; 1980 Jun; 191(2):313-25. PubMed ID: 7378763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climbing fibre activation of Purkinje cell following primary vestibular afferent stimulation in the frog.
    Llinás R; Precht W; Kitai ST
    Brain Res; 1967 Oct; 6(2):371-5. PubMed ID: 6056717
    [No Abstract]   [Full Text] [Related]  

  • 11. Response characteristics and vestibular receptor convergence of frog cerebellar purkinje cells. A natural stimulation study.
    Blanks RH; Precht W; Giretti ML
    Exp Brain Res; 1977 Feb; 27(2):181-201. PubMed ID: 300059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal interactions in frog cerebellum.
    Bloedel JR; Llinas R
    J Neurophysiol; 1969 Nov; 32(6):871-80. PubMed ID: 4310506
    [No Abstract]   [Full Text] [Related]  

  • 13. Functional organization of the vestibular input to ocular motoneurons of the frog.
    Magherini PC; Precht W; Schwindt PC
    Pflugers Arch; 1974 Jun; 349(2):149-58. PubMed ID: 4368734
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanisms of compensation for vestibular deficits in the frog. I. Modification of the excitatory commissural system.
    Dieringer N; Precht W
    Exp Brain Res; 1979 Jul; 36(2):311-28. PubMed ID: 226388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Canal-specific excitation and inhibition of frog second-order vestibular neurons.
    Straka H; Biesdorf S; Dieringer N
    J Neurophysiol; 1997 Sep; 78(3):1363-72. PubMed ID: 9310427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why run parallel fibers parallel? Teleostean Purkinje cells as possible coincidence detectors, in a timing device subserving spatial coding of temporal differences.
    Meek J
    Neuroscience; 1992; 48(2):249-83. PubMed ID: 1603322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradual and reversible central vestibular reorganization in frog after selective labyrinthine nerve branch lesions.
    Goto F; Straka H; Dieringer N
    Exp Brain Res; 2002 Dec; 147(3):374-86. PubMed ID: 12428145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional organization of the vestibular input to the anterior and posterior cerebellar vermis of cat.
    Precht W; Volkind R; Blanks RH
    Exp Brain Res; 1977 Feb; 27(2):143-60. PubMed ID: 65291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and electrophysiological consequences of unilateral pre- versus postganglionic vestibular lesions in the frog.
    Kunkel AW; Dieringer N
    J Comp Physiol A; 1994 May; 174(5):621-32. PubMed ID: 8006858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental approaches to the study of degenerative and regenerative processes in the nervous tissue. I). Morphological changes in the frog cerebellum after unilateral transection of the VIII statoacustic nerve.
    Vignola C; Scherini E; Valli P; Bernocchi G
    J Hirnforsch; 1992; 33(4-5):509-14. PubMed ID: 1479191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.