These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 31304613)

  • 1. Decomposition feature selection with applications in detecting correlated biomarkers of bipolar disorders.
    Huang H; Li Y; Liang H; Wu CO
    Stat Med; 2019 Oct; 38(23):4574-4582. PubMed ID: 31304613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-dimensional Cox models: the choice of penalty as part of the model building process.
    Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U
    Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RANDOM LASSO.
    Wang S; Nan B; Rosset S; Zhu J
    Ann Appl Stat; 2011 Mar; 5(1):468-485. PubMed ID: 22997542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature selection for support vector regression using a genetic algorithm.
    McKearnan SB; Vock DM; Marai GE; Canahuate G; Fuller CD; Wolfson J
    Biostatistics; 2023 Apr; 24(2):295-308. PubMed ID: 34494086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ridle for sparse regression with mandatory covariates with application to the genetic assessment of histologic grades of breast cancer.
    Zhai J; Hsu CH; Daye ZJ
    BMC Med Res Methodol; 2017 Jan; 17(1):12. PubMed ID: 28122498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A learning-based material decomposition pipeline for multi-energy x-ray imaging.
    Lu Y; Kowarschik M; Huang X; Xia Y; Choi JH; Chen S; Hu S; Ren Q; Fahrig R; Hornegger J; Maier A
    Med Phys; 2019 Feb; 46(2):689-703. PubMed ID: 30508253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models.
    Haem E; Harling K; Ayatollahi SM; Zare N; Karlsson MO
    J Pharmacokinet Pharmacodyn; 2017 Feb; 44(1):55-66. PubMed ID: 28144841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine-Learning Assisted Screening of Correlated Covariates: Application to Clinical Data of Desipramine.
    Asiimwe IG; S'fiso Ndzamba B; Mouksassi S; Pillai GC; Lombard A; Lang J
    AAPS J; 2024 May; 26(4):63. PubMed ID: 38816519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom.
    Hwang HJ; Hahne JM; Müller KR
    J Neural Eng; 2014 Oct; 11(5):056008. PubMed ID: 25082779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-varying feature selection for longitudinal analysis.
    Xue L; Shu X; Shi P; Wu CO; Qu A
    Stat Med; 2020 Jan; 39(2):156-170. PubMed ID: 31758598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individualized identification of euthymic bipolar disorder using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and machine learning.
    Wu MJ; Passos IC; Bauer IE; Lavagnino L; Cao B; Zunta-Soares GB; Kapczinski F; Mwangi B; Soares JC
    J Affect Disord; 2016 Mar; 192():219-25. PubMed ID: 26748737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable feature selection for clinical prediction: exploiting ICD tree structure using Tree-Lasso.
    Kamkar I; Gupta SK; Phung D; Venkatesh S
    J Biomed Inform; 2015 Feb; 53():277-90. PubMed ID: 25500636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: simulation and application.
    Vasquez MM; Hu C; Roe DJ; Chen Z; Halonen M; Guerra S
    BMC Med Res Methodol; 2016 Nov; 16(1):154. PubMed ID: 27842498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of penalised regression methods for informing the selection of predictive markers.
    Greenwood CJ; Youssef GJ; Letcher P; Macdonald JA; Hagg LJ; Sanson A; Mcintosh J; Hutchinson DM; Toumbourou JW; Fuller-Tyszkiewicz M; Olsson CA
    PLoS One; 2020; 15(11):e0242730. PubMed ID: 33216811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wrapper Feature Subset Selection Method Based on Randomized Search and Multilayer Structure.
    Mao Y; Yang Y
    Biomed Res Int; 2019; 2019():9864213. PubMed ID: 31828154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biological mechanism for Bayesian feature selection: Weight decay and raising the LASSO.
    Connor P; Hollensen P; Krigolson O; Trappenberg T
    Neural Netw; 2015 Jul; 67():121-30. PubMed ID: 25897512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Feature Sampling Strategy for Analysis of High Dimensional Genomic Data.
    Zhang J; Zhao Z; Zhang K; Wei Z
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):434-441. PubMed ID: 29990199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fastJT: An R package for robust and efficient feature selection for machine learning and genome-wide association studies.
    Lin J; Sibley A; Shterev I; Nixon A; Innocenti F; Chan C; Owzar K
    BMC Bioinformatics; 2019 Jun; 20(1):333. PubMed ID: 31195980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HDSI: High dimensional selection with interactions algorithm on feature selection and testing.
    Jain R; Xu W
    PLoS One; 2021; 16(2):e0246159. PubMed ID: 33592034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lasso estimation of hierarchical interactions for analyzing heterogeneity of treatment effect.
    Du Y; Chen H; Varadhan R
    Stat Med; 2021 Nov; 40(25):5417-5433. PubMed ID: 34240443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.