These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 31304738)
1. Skin-Inspired Gels with Toughness, Antifreezing, Conductivity, and Remoldability. Chen H; Ren X; Gao G ACS Appl Mater Interfaces; 2019 Aug; 11(31):28336-28344. PubMed ID: 31304738 [TBL] [Abstract][Full Text] [Related]
2. Stable, Strain-Sensitive Conductive Hydrogel with Antifreezing Capability, Remoldability, and Reusability. Hu C; Zhang Y; Wang X; Xing L; Shi L; Ran R ACS Appl Mater Interfaces; 2018 Dec; 10(50):44000-44010. PubMed ID: 30484633 [TBL] [Abstract][Full Text] [Related]
3. Conductive Self-Healing Nanocomposite Hydrogel Skin Sensors with Antifreezing and Thermoresponsive Properties. Wei P; Chen T; Chen G; Liu H; Mugaanire IT; Hou K; Zhu M ACS Appl Mater Interfaces; 2020 Jan; 12(2):3068-3079. PubMed ID: 31869196 [TBL] [Abstract][Full Text] [Related]
4. Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor. Chen D; Zhao X; Wei X; Zhang J; Wang D; Lu H; Jia P ACS Appl Mater Interfaces; 2020 Nov; 12(47):53247-53256. PubMed ID: 33185423 [TBL] [Abstract][Full Text] [Related]
5. Tannic acid modified antifreezing gelatin organohydrogel for low modulus, high toughness, and sensitive flexible strain sensor. Zaidi SFA; Kim YA; Saeed A; Sarwar N; Lee NE; Yoon DH; Lim B; Lee JH Int J Biol Macromol; 2022 Jun; 209(Pt B):1665-1675. PubMed ID: 35487373 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions. Zhang H; Ren P; Yang F; Chen J; Wang C; Zhou Y; Fu J J Mater Chem B; 2020 Dec; 8(46):10549-10558. PubMed ID: 33125024 [TBL] [Abstract][Full Text] [Related]
7. Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy. Lu J; Hu O; Hou L; Ye D; Weng S; Jiang X Int J Biol Macromol; 2022 Nov; 221():1002-1011. PubMed ID: 36113584 [TBL] [Abstract][Full Text] [Related]
8. Alginate fiber toughened gels similar to skin intelligence as ionic sensors. Chen H; Gao Y; Ren X; Gao G Carbohydr Polym; 2020 May; 235():116018. PubMed ID: 32122516 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing. Fan L; Xie J; Zheng Y; Wei D; Yao D; Zhang J; Zhang T ACS Appl Mater Interfaces; 2020 May; 12(19):22225-22236. PubMed ID: 32315157 [TBL] [Abstract][Full Text] [Related]
10. Strong, tough and anisotropic bioinspired hydrogels. Wang S; Lei L; Tian Y; Ning H; Hu N; Wu P; Jiang H; Zhang L; Luo X; Liu F; Zou R; Wen J; Wu X; Xiang C; Liu J Mater Horiz; 2024 May; 11(9):2131-2142. PubMed ID: 38376175 [TBL] [Abstract][Full Text] [Related]
11. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232 [TBL] [Abstract][Full Text] [Related]
12. PVA-gelatin hydrogels formed using combined theta-gel and cryo-gel fabrication techniques. Charron PN; Braddish TA; Oldinski RA J Mech Behav Biomed Mater; 2019 Apr; 92():90-96. PubMed ID: 30665114 [TBL] [Abstract][Full Text] [Related]
13. Skin-inspired cellulose conductive hydrogels with integrated self-healing, strain, and thermal sensitive performance. Pang J; Wang L; Xu Y; Wu M; Wang M; Liu Y; Yu S; Li L Carbohydr Polym; 2020 Jul; 240():116360. PubMed ID: 32475541 [TBL] [Abstract][Full Text] [Related]
14. Gelatin-Reinforced Zwitterionic Organohydrogel with Tough, Self-Adhesive, Long-Term Moisturizing and Antifreezing Properties for Wearable Electronics. Cao L; Zhao Z; Li J; Yi Y; Wei Y Biomacromolecules; 2022 Mar; 23(3):1278-1290. PubMed ID: 35171559 [TBL] [Abstract][Full Text] [Related]
15. Ultra-stretchable and conductive polyacrylamide/carboxymethyl chitosan composite hydrogels with low modulus and fast self-recoverability as flexible strain sensors. Ding H; Liu J; Huo P; Ding R; Shen X; Mao H; Wen Y; Li H; Wu ZL Int J Biol Macromol; 2023 Dec; 253(Pt 5):127146. PubMed ID: 37778581 [TBL] [Abstract][Full Text] [Related]
16. Starch/polyvinyl alcohol with ionic liquid/graphene oxide enabled highly tough, conductive and freezing-resistance hydrogels for multimodal wearable sensors. Li X; Zhang S; Li X; Lu L; Cui B; Yuan C; Guo L; Yu B; Chai Q Carbohydr Polym; 2023 Nov; 320():121262. PubMed ID: 37659784 [TBL] [Abstract][Full Text] [Related]
17. Plant-inspired conductive adhesive organohydrogel with extreme environmental tolerance as a wearable dressing for multifunctional sensors. Tang Z; Bian S; Wei J; Xiao H; Zhang M; Liu K; Huang L; Chen L; Ni Y; Wu H Colloids Surf B Biointerfaces; 2022 Jul; 215():112509. PubMed ID: 35472651 [TBL] [Abstract][Full Text] [Related]
18. Tough, Resilient, Adhesive, and Anti-Freezing Hydrogels Cross-Linked with a Macromolecular Cross-Linker for Wearable Strain Sensors. Liu R; Cui L; Wang H; Chen Q; Guan Y; Zhang Y ACS Appl Mater Interfaces; 2021 Sep; 13(35):42052-42062. PubMed ID: 34435780 [TBL] [Abstract][Full Text] [Related]
19. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. Zhang X; Chen J; He J; Bai Y; Zeng H J Colloid Interface Sci; 2021 Mar; 585():420-432. PubMed ID: 33268058 [TBL] [Abstract][Full Text] [Related]
20. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications. Karimi A; Navidbakhsh M Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]