BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31304747)

  • 1. A Multifunctional Cosolvent Pair Reveals Molecular Principles of Biomass Deconstruction.
    Patri AS; Mostofian B; Pu Y; Ciaffone N; Soliman M; Smith MD; Kumar R; Cheng X; Wyman CE; Tetard L; Ragauskas AJ; Smith JC; Petridis L; Cai CM
    J Am Chem Soc; 2019 Aug; 141(32):12545-12557. PubMed ID: 31304747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces.
    Pingali SV; Smith MD; Liu SH; Rawal TB; Pu Y; Shah R; Evans BR; Urban VS; Davison BH; Cai CM; Ragauskas AJ; O'Neill HM; Smith JC; Petridis L
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16776-16781. PubMed ID: 32636260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications.
    Mostofian B; Cai CM; Smith MD; Petridis L; Cheng X; Wyman CE; Smith JC
    J Am Chem Soc; 2016 Aug; 138(34):10869-78. PubMed ID: 27482599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Tetrahydrofuran on the Solubilization and Depolymerization of Cellulose in a Biphasic System.
    Jiang Z; Zhao P; Li J; Liu X; Hu C
    ChemSusChem; 2018 Jan; 11(2):397-405. PubMed ID: 29148211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A catalytic biofuel production strategy involving separate conversion of hemicellulose and cellulose using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents.
    Kim S; Han J
    Bioresour Technol; 2016 Mar; 204():1-8. PubMed ID: 26765845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse.
    Li AL; Hou XD; Lin KP; Zhang X; Fu MH
    J Biosci Bioeng; 2018 Sep; 126(3):346-354. PubMed ID: 29657125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process.
    Lee HV; Hamid SB; Zain SK
    ScientificWorldJournal; 2014; 2014():631013. PubMed ID: 25247208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity.
    Tian D; Guo Y; Hu J; Yang G; Zhang J; Luo L; Xiao Y; Deng S; Deng O; Zhou W; Shen F
    Int J Biol Macromol; 2020 Jan; 142():288-297. PubMed ID: 31593728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of γ-Valerolactone/H
    Luo Y; Li Z; Zuo Y; Su Z; Hu C
    J Agric Food Chem; 2018 Jun; 66(24):6094-6103. PubMed ID: 29799753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced sampling simulation analysis of the structure of lignin in the THF-water miscibility gap.
    Smith MD; Petridis L; Cheng X; Mostofian B; Smith JC
    Phys Chem Chem Phys; 2016 Mar; 18(9):6394-8. PubMed ID: 26862597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of lignin level on release of hemicellulose-derived sugars in liquid hot water.
    Yu Q; Zhuang X; Yuan Z; Kong X; Qi W; Wang W; Wang Q; Tan X
    Int J Biol Macromol; 2016 Jan; 82():967-72. PubMed ID: 26484600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal fractionation of woody biomass: Lignin effect on sugars recovery.
    Yedro FM; Cantero DA; Pascual M; García-Serna J; Cocero MJ
    Bioresour Technol; 2015 Sep; 191():124-32. PubMed ID: 25985415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass.
    Nguyen TY; Cai CM; Kumar R; Wyman CE
    ChemSusChem; 2015 May; 8(10):1716-25. PubMed ID: 25677100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-driven preferential association of lignin with regions of crystalline cellulose in molecular dynamics simulation.
    Lindner B; Petridis L; Schulz R; Smith JC
    Biomacromolecules; 2013 Oct; 14(10):3390-8. PubMed ID: 23980921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valorization of Miscanthus × giganteus by γ-Valerolactone/H
    Ding D; Hu J; Hui L; Liu Z; Shao L
    Carbohydr Polym; 2021 Oct; 270():118388. PubMed ID: 34364629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities.
    Satlewal A; Agrawal R; Bhagia S; Sangoro J; Ragauskas AJ
    Biotechnol Adv; 2018 Dec; 36(8):2032-2050. PubMed ID: 30193965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pretreatment of Lignocellulosic Biomass with Low-cost Ionic Liquids.
    Gschwend FJ; Brandt A; Chambon CL; Tu WC; Weigand L; Hallett JP
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27583830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals.
    Binder JB; Raines RT
    J Am Chem Soc; 2009 Feb; 131(5):1979-85. PubMed ID: 19159236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a low melting solvent mixture to extract value from wood biomass.
    Hiltunen J; Kuutti L; Rovio S; Puhakka E; Virtanen T; Ohra-Aho T; Vuoti S
    Sci Rep; 2016 Sep; 6():32420. PubMed ID: 27599741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin.
    Ren Q; Zhao C
    Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.