These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31304866)

  • 1. Regions and Connections: Complementary Approaches to Characterize Brain Organization and Function.
    Horien C; Greene AS; Constable RT; Scheinost D
    Neuroscientist; 2020 Apr; 26(2):117-133. PubMed ID: 31304866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.
    Chu SH; Parhi KK; Lenglet C
    Sci Rep; 2018 Mar; 8(1):4741. PubMed ID: 29549287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring macroscopic brain connections in vivo.
    Jbabdi S; Sotiropoulos SN; Haber SN; Van Essen DC; Behrens TE
    Nat Neurosci; 2015 Nov; 18(11):1546-55. PubMed ID: 26505566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for analysis of brain connectivity: An IFCN-sponsored review.
    Rossini PM; Di Iorio R; Bentivoglio M; Bertini G; Ferreri F; Gerloff C; Ilmoniemi RJ; Miraglia F; Nitsche MA; Pestilli F; Rosanova M; Shirota Y; Tesoriero C; Ugawa Y; Vecchio F; Ziemann U; Hallett M
    Clin Neurophysiol; 2019 Oct; 130(10):1833-1858. PubMed ID: 31401492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional brain connectivity as revealed by singular spectrum analysis.
    Seghouane AK; Shah A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5186-9. PubMed ID: 23367097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional connectivity in fMRI: A modeling approach for estimation and for relating to local circuits.
    Winder R; Cortes CR; Reggia JA; Tagamets MA
    Neuroimage; 2007 Feb; 34(3):1093-107. PubMed ID: 17134917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability.
    Gilson M; Kouvaris NE; Deco G; Mangin JF; Poupon C; Lefranc S; Rivière D; Zamora-López G
    Neuroimage; 2019 Nov; 201():116007. PubMed ID: 31306771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Basis of Large-Scale Functional Connectivity in the Mouse.
    Grandjean J; Zerbi V; Balsters JH; Wenderoth N; Rudin M
    J Neurosci; 2017 Aug; 37(34):8092-8101. PubMed ID: 28716961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting state functional magnetic resonance imaging processing techniques in stroke studies.
    Mirzaei G; Adeli H
    Rev Neurosci; 2016 Dec; 27(8):871-885. PubMed ID: 27845889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure-Informed Connectomics: Enriching Large-Scale Descriptions of Healthy and Diseased Brains.
    Larivière S; Vos de Wael R; Paquola C; Hong SJ; Mišić B; Bernasconi N; Bernasconi A; Bonilha L; Bernhardt BC
    Brain Connect; 2019 Mar; 9(2):113-127. PubMed ID: 30079754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ANOVA approach for statistical comparisons of brain networks.
    Fraiman D; Fraiman R
    Sci Rep; 2018 Mar; 8(1):4746. PubMed ID: 29549369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain organization into resting state networks emerges at criticality on a model of the human connectome.
    Haimovici A; Tagliazucchi E; Balenzuela P; Chialvo DR
    Phys Rev Lett; 2013 Apr; 110(17):178101. PubMed ID: 23679783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using connectome-based predictive modeling to predict individual behavior from brain connectivity.
    Shen X; Finn ES; Scheinost D; Rosenberg MD; Chun MM; Papademetris X; Constable RT
    Nat Protoc; 2017 Mar; 12(3):506-518. PubMed ID: 28182017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the Hierarchical Architecture of the Human Brain Using Subject-Level Clustering of Functional Networks.
    Akiki TJ; Abdallah CG
    Sci Rep; 2019 Dec; 9(1):19290. PubMed ID: 31848397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Large-Scale Organization of Object-Responsive Cortex Is Reflected in Resting-State Network Architecture.
    Konkle T; Caramazza A
    Cereb Cortex; 2017 Oct; 27(10):4933-4945. PubMed ID: 27664960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ten simple rules for predictive modeling of individual differences in neuroimaging.
    Scheinost D; Noble S; Horien C; Greene AS; Lake EM; Salehi M; Gao S; Shen X; O'Connor D; Barron DS; Yip SW; Rosenberg MD; Constable RT
    Neuroimage; 2019 Jun; 193():35-45. PubMed ID: 30831310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.