These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31305010)

  • 21. Robust and Transparent Lossless Directional Omniphobic Ultra-Thin Sticker-Type Film with Re-entrant Micro-Stripe Arrays.
    Kang SM; An JH
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39646-39653. PubMed ID: 35979700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape-Deformed Mushroom-like Reentrant Structures for Robust Liquid-Repellent Surfaces.
    Kim DH; Kim S; Park SR; Fang NX; Cho YT
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33618-33626. PubMed ID: 34196537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D-Printed Repeating Re-Entrant Topography to Achieve On-Demand Wettability and Separation.
    Wang B; Chen J; Kowall C; Li L
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35725-35730. PubMed ID: 32639136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioinspired programmable wettability arrays for droplets manipulation.
    Sun L; Bian F; Wang Y; Wang Y; Zhang X; Zhao Y
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4527-4532. PubMed ID: 32071202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.
    Zhao L; Cheng J
    Nanoscale; 2018 Apr; 10(14):6426-6436. PubMed ID: 29564459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multistimuli-Responsive Microstructured Superamphiphobic Surfaces with Large-Range, Reversible Switchable Wettability for Oil.
    Wang H; Zhang Z; Wang Z; Liang Y; Cui Z; Zhao J; Li X; Ren L
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28478-28486. PubMed ID: 31307191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Why re-entrant surface topography is needed for robust oleophobicity.
    Nosonovsky M; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gecko toe pads inspired in situ switchable superhydrophobic shape memory adhesive film.
    Wang Y; Lai H; Cheng Z; Zhang H; Zhang E; Lv T; Liu Y; Jiang L
    Nanoscale; 2019 May; 11(18):8984-8993. PubMed ID: 31017157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Springtail-Inspired Superamphiphobic Ordered Nanohoodoo Arrays with Quasi-Doubly Reentrant Structures.
    Dong S; Zhang X; Li Q; Liu C; Ye T; Liu J; Xu H; Zhang X; Liu J; Jiang C; Xue L; Yang S; Xiao X
    Small; 2020 May; 16(19):e2000779. PubMed ID: 32285646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Programmable Digital Liquid Metal Droplets in Reconfigurable Magnetic Fields.
    Li X; Li S; Lu Y; Liu M; Li F; Yang H; Tang SY; Zhang S; Li W; Sun L
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37670-37679. PubMed ID: 32700519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple-Droplet Selective Manipulation Enabled by Laser-Textured Hydrophobic Magnetism-Responsive Slanted Micropillar Arrays with an Ultrafast Reconfiguration Rate.
    Wu S; Li D; Zhang J; Zhang Y; Zhang Y; Li S; Chen C; Guo S; Li C; Lao Z
    Langmuir; 2023 Feb; 39(7):2589-2597. PubMed ID: 36774656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oil droplet self-transportation on oleophobic surfaces.
    Li J; Qin QH; Shah A; Ras RH; Tian X; Jokinen V
    Sci Adv; 2016 Jun; 2(6):e1600148. PubMed ID: 27386574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling and modelling the wetting properties of III-V semiconductor surfaces using re-entrant nanostructures.
    Ng WH; Lu Y; Liu H; Carmalt CJ; Parkin IP; Kenyon AJ
    Sci Rep; 2018 Feb; 8(1):3544. PubMed ID: 29476160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface Chemistry Enhancements for the Tunable Super-Liquid Repellency of Low-Surface-Tension Liquids.
    Wong WSY
    Nano Lett; 2019 Mar; 19(3):1892-1901. PubMed ID: 30726096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Wang P; Zhao T; Bian R; Wang G; Liu H
    ACS Nano; 2017 Dec; 11(12):12385-12391. PubMed ID: 29140678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Femtosecond Laser Direct Writing of Gecko-Inspired Switchable Adhesion Interfaces on a Flexible Substrate.
    Zhang Z; He B; Han Q; He R; Ding Y; Han B; Ma ZC
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation.
    Yang C; Wu L; Li G
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20150-20158. PubMed ID: 29806941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.