BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31305055)

  • 1. Dynamic Creation of 3D Hydrogel Architectures via Selective Swelling Programmed by Interfacial Bonding.
    Takahashi R; Miyazako H; Tanaka A; Ueno Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28267-28277. PubMed ID: 31305055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tough, permeable and biocompatible microfluidic devices formed through the buckling delamination of soft hydrogel films.
    Takahashi R; Miyazako H; Tanaka A; Ueno Y; Yamaguchi M
    Lab Chip; 2021 Apr; 21(7):1307-1317. PubMed ID: 33656028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Swelling-induced delamination causes folding of surface-tethered polymer gels.
    Velankar SS; Lai V; Vaia RA
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):24-9. PubMed ID: 22200108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creating Stiff, Tough, and Functional Hydrogel Composites with Low-Melting-Point Alloys.
    Takahashi R; Sun TL; Saruwatari Y; Kurokawa T; King DR; Gong JP
    Adv Mater; 2018 Apr; 30(16):e1706885. PubMed ID: 29534320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled shape deformation of bilayer films with tough adhesion between nanocomposite hydrogels and polymer substrates.
    Li Y; Yang J; Yu X; Sun X; Chen F; Tang Z; Zhu L; Qin G; Chen Q
    J Mater Chem B; 2018 Nov; 6(41):6629-6636. PubMed ID: 32254871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired 3D structures with programmable morphologies and motions.
    Nojoomi A; Arslan H; Lee K; Yum K
    Nat Commun; 2018 Sep; 9(1):3705. PubMed ID: 30209312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.
    Jeon SJ; Hauser AW; Hayward RC
    Acc Chem Res; 2017 Feb; 50(2):161-169. PubMed ID: 28181798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kirigami-Design-Enabled Hydrogel Multimorphs with Application as a Multistate Switch.
    Hao XP; Xu Z; Li CY; Hong W; Zheng Q; Wu ZL
    Adv Mater; 2020 Jun; 32(22):e2000781. PubMed ID: 32319155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels.
    Chiang MY; Hsu YW; Hsieh HY; Chen SY; Fan SK
    Sci Adv; 2016 Oct; 2(10):e1600964. PubMed ID: 27819046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating an Interface: Rendering a Double-Network Hydrogel Lubricious via Spontaneous Delamination.
    Zhang K; Simic R; Yan W; Spencer ND
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25427-25435. PubMed ID: 31264828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro 3D printing using a digital projector and its application in the study of soft materials mechanics.
    Lee H; Fang NX
    J Vis Exp; 2012 Nov; (69):e4457. PubMed ID: 23222659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing.
    Zhao Q; Liang Y; Ren L; Qiu F; Zhang Z; Ren L
    J Mech Behav Biomed Mater; 2018 Feb; 78():395-403. PubMed ID: 29223036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photolithographically Patterned Hydrogels with Programmed Deformations.
    Li CY; Hao XP; Wu ZL; Zheng Q
    Chem Asian J; 2019 Jan; 14(1):94-104. PubMed ID: 30239161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible Self-Assembly of 3D Architectures Actuated by Responsive Polymers.
    Zhang C; Su JW; Deng H; Xie Y; Yan Z; Lin J
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41505-41511. PubMed ID: 29115816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices.
    Wang Z; Zhang H; Chu AJ; Jackson J; Lin K; Lim CJ; Lange D; Chiao M
    Acta Biomater; 2018 Apr; 70():98-109. PubMed ID: 29447960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial optimization of fiber-reinforced hydrogel composites for soft fibrous tissue applications.
    Holloway JL; Lowman AM; VanLandingham MR; Palmese GR
    Acta Biomater; 2014 Aug; 10(8):3581-9. PubMed ID: 24814880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro patterning of hydroxyapatite by soft lithography on hydrogels for selective osteoconduction.
    Kiyama R; Nonoyama T; Wada S; Semba S; Kitamura N; Nakajima T; Kurokawa T; Yasuda K; Tanaka S; Gong JP
    Acta Biomater; 2018 Nov; 81():60-69. PubMed ID: 30292679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable all-DNA hydrogels based on rolling circle and multiprimed chain amplification products.
    Hanif W; Yadav I; Hasan E; Alsulaiman D
    APL Bioeng; 2023 Dec; 7(4):046106. PubMed ID: 37901137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics of pH-responsive hydrogel capsules.
    Best JP; Neubauer MP; Javed S; Dam HH; Fery A; Caruso F
    Langmuir; 2013 Aug; 29(31):9814-23. PubMed ID: 23886008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.