BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31305129)

  • 1. Application of Hyperspectral Imaging as a Nondestructive Technique for Foodborne Pathogen Detection and Characterization.
    Bonah E; Huang X; Aheto JH; Osae R
    Foodborne Pathog Dis; 2019 Oct; 16(10):712-722. PubMed ID: 31305129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial detection and identification methods: Bench top assays to omics approaches.
    Ferone M; Gowen A; Fanning S; Scannell AGM
    Compr Rev Food Sci Food Saf; 2020 Nov; 19(6):3106-3129. PubMed ID: 33337061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety.
    Mangal M; Bansal S; Sharma SK; Gupta RK
    Crit Rev Food Sci Nutr; 2016 Jul; 56(9):1568-84. PubMed ID: 25830555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber-Optic-Based Biosensor as an Innovative Technology for Point-of-Care Testing Detection of Foodborne Pathogenic Bacteria To Defend Food and Agricultural Product Safety.
    Gu R; Duan Y; Li Y; Luo Z
    J Agric Food Chem; 2023 Jul; 71(29):10982-10988. PubMed ID: 37432923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperspectral imaging and machine learning in food microbiology: Developments and challenges in detection of bacterial, fungal, and viral contaminants.
    Soni A; Dixit Y; Reis MM; Brightwell G
    Compr Rev Food Sci Food Saf; 2022 Jul; 21(4):3717-3745. PubMed ID: 35686478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Techniques for Hyperspectral Imaging in the Food Industry: Principles and Recent Applications.
    Ma J; Sun DW; Pu H; Cheng JH; Wei Q
    Annu Rev Food Sci Technol; 2019 Mar; 10():197-220. PubMed ID: 30633569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens.
    Tao J; Liu W; Ding W; Han R; Shen Q; Xia Y; Zhang Y; Sun W
    J Food Sci; 2020 Mar; 85(3):744-754. PubMed ID: 31999364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the potential of hyperspectral imaging for microbial assessment of meat: A review.
    Matenda RT; Rip D; Marais J; Williams PJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jul; 315():124261. PubMed ID: 38608560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From hazard analysis to risk control using rapid methods in microbiology: A practical approach for the food industry.
    Ripolles-Avila C; Martínez-Garcia M; Capellas M; Yuste J; Fung DYC; Rodríguez-Jerez JJ
    Compr Rev Food Sci Food Saf; 2020 Jul; 19(4):1877-1907. PubMed ID: 33337076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens.
    Li Y; Fan P; Zhou S; Zhang L
    Microb Pathog; 2017 Jun; 107():54-61. PubMed ID: 28323152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks
    Kang R; Park B; Eady M; Ouyang Q; Chen K
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3157-3166. PubMed ID: 32047991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens.
    Ferrario C; Lugli GA; Ossiprandi MC; Turroni F; Milani C; Duranti S; Mancabelli L; Mangifesta M; Alessandri G; van Sinderen D; Ventura M
    Int J Food Microbiol; 2017 Sep; 256():20-29. PubMed ID: 28578266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Preparation of a 96-microwell plate DNA diagnostic chip for detection of foodborne bacteria and its application in an incident of food poisoning].
    Mo QH; Li Q; Lin JC; Tan H; Tu CN; Ye LQ; Liu ZM; Du J; Sun H; Li SX; Wang S; Yang Z
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 Mar; 30(3):417-21. PubMed ID: 20335099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nondestructive monitoring, kinetics and antimicrobial properties of ultrasound technology applied for surface decontamination of bacterial foodborne pathogen in pork.
    Bonah E; Huang X; Hongying Y; Harrington Aheto J; Yi R; Yu S; Tu H
    Ultrason Sonochem; 2021 Jan; 70():105344. PubMed ID: 32992130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of transducers as platform for the rapid detection of foodborne pathogens.
    Arora P; Sindhu A; Kaur H; Dilbaghi N; Chaudhury A
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1829-40. PubMed ID: 23329385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in rapid detection methods for foodborne pathogens.
    Zhao X; Lin CW; Wang J; Oh DH
    J Microbiol Biotechnol; 2014 Mar; 24(3):297-312. PubMed ID: 24375418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research progress on the detection of foodborne pathogens based on aptamer recognition.
    Guo X
    Mikrochim Acta; 2024 May; 191(6):318. PubMed ID: 38727855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiological food safety issues in Brazil: bacterial pathogens.
    Gomes BC; Franco BD; De Martinis EC
    Foodborne Pathog Dis; 2013 Mar; 10(3):197-205. PubMed ID: 23489044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research advances in imaging technology for food safety and quality control].
    Deng Y; Wang X; Yang M; He M; Zhang F
    Se Pu; 2020 Jul; 38(7):741-749. PubMed ID: 34213280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroanalytical biosensors and their potential for food pathogen and toxin detection.
    Palchetti I; Mascini M
    Anal Bioanal Chem; 2008 May; 391(2):455-71. PubMed ID: 18283441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.