BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31305216)

  • 21. Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography.
    Boitor R; Sinjab F; Strohbuecker S; Sottile V; Notingher I
    Faraday Discuss; 2016 Jun; 187():199-212. PubMed ID: 27023675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanomechanical characterization of living mammary tissues by atomic force microscopy.
    Plodinec M; Lim RY
    Methods Mol Biol; 2015; 1293():231-46. PubMed ID: 26040692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy.
    Tang M; McEwen GD; Wu Y; Miller CD; Zhou A
    Anal Bioanal Chem; 2013 Feb; 405(5):1577-91. PubMed ID: 23196750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new modality for cholesterol impact tracking in colon cancer development - Raman imaging, fluorescence and AFM studies combined with chemometric analysis.
    Beton-Mysur K; Brożek-Płuska B
    Anal Methods; 2023 Oct; 15(39):5199-5217. PubMed ID: 37781815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy.
    Wei M; Shi L; Shen Y; Zhao Z; Guzman A; Kaufman LJ; Wei L; Min W
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6608-6617. PubMed ID: 30872474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Raman molecular imaging of brain frozen tissue sections.
    Kast RE; Auner GW; Rosenblum ML; Mikkelsen T; Yurgelevic SM; Raghunathan A; Poisson LM; Kalkanis SN
    J Neurooncol; 2014 Oct; 120(1):55-62. PubMed ID: 25038847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.
    Ramachandran G
    Methods Mol Biol; 2017; 1523():113-128. PubMed ID: 27975247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Medical applications of atomic force microscopy and Raman spectroscopy.
    Choi S; Jung GB; Kim KS; Lee GJ; Park HK
    J Nanosci Nanotechnol; 2014 Jan; 14(1):71-97. PubMed ID: 24730252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic force microscopy for biological imaging and mechanical testing across length scales.
    Plodinec M; Loparic M; Aebi U
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.top86. PubMed ID: 20889710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unsupervised unmixing of Raman microspectroscopic images for morphochemical analysis of non-dried brain tumor specimens.
    Bergner N; Krafft C; Geiger KD; Kirsch M; Schackert G; Popp J
    Anal Bioanal Chem; 2012 May; 403(3):719-25. PubMed ID: 22367289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging.
    Kast R; Auner G; Yurgelevic S; Broadbent B; Raghunathan A; Poisson LM; Mikkelsen T; Rosenblum ML; Kalkanis SN
    J Neurooncol; 2015 Nov; 125(2):287-95. PubMed ID: 26359131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlated atomic force microscopy and fluorescence lifetime imaging of live bacterial cells.
    Micic M; Hu D; Suh YD; Newton G; Romine M; Lu HP
    Colloids Surf B Biointerfaces; 2004 Apr; 34(4):205-12. PubMed ID: 15261059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular characterization of DNA double strand breaks with tip-enhanced Raman scattering.
    Lipiec E; Sekine R; Bielecki J; Kwiatek WM; Wood BR
    Angew Chem Int Ed Engl; 2014 Jan; 53(1):169-72. PubMed ID: 24243588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomaterial and cellular properties as examined through atomic force microscopy, fluorescence optical microscopies and spectroscopic techniques.
    Kainz B; Oprzeska-Zingrebe EA; Herrera JL
    Biotechnol J; 2014 Jan; 9(1):51-60. PubMed ID: 24265117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains.
    Krafft C; Kirsch M; Beleites C; Schackert G; Salzer R
    Anal Bioanal Chem; 2007 Oct; 389(4):1133-42. PubMed ID: 17639353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ex vivo and in vivo diagnosis of C6 glioblastoma development by Raman spectroscopy coupled to a microprobe.
    Beljebbar A; Dukic S; Amharref N; Manfait M
    Anal Bioanal Chem; 2010 Sep; 398(1):477-87. PubMed ID: 20577720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New look inside human breast ducts with Raman imaging. Raman candidates as diagnostic markers for breast cancer prognosis: Mammaglobin, palmitic acid and sphingomyelin.
    Abramczyk H; Brozek-Pluska B
    Anal Chim Acta; 2016 Feb; 909():91-100. PubMed ID: 26851089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in the biomechanical properties of a single cell induced by nonthermal atmospheric pressure micro-dielectric barrier discharge plasma.
    Choi H; Choi EH; Kim KS
    Microsc Res Tech; 2017 Oct; 80(10):1078-1084. PubMed ID: 28640537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Label-Free Raman Spectroscopic Techniques with Morphological and Optical Characterization for Cancer Cell Analysis.
    Lee S; Kim JK
    Adv Exp Med Biol; 2021; 1310():385-399. PubMed ID: 33834443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy.
    Bitar RA; Martinho Hda S; Tierra-Criollo CJ; Zambelli Ramalho LN; Netto MM; Martin AA
    J Biomed Opt; 2006; 11(5):054001. PubMed ID: 17092150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.