These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31305571)

  • 1. Photopolymer-based coaxial holographic lens for spectral confocal displacement and morphology measurement.
    Liu H; Wang B; Wang R; Wang M; Yu D; Wang W
    Opt Lett; 2019 Jul; 44(14):3554-3557. PubMed ID: 31305571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expansion of axial dispersion in a photopolymer-based holographic lens and its improvement for measuring displacement.
    Liu Y; Liu H; Wang B; Wei M; Li L; Wang W
    Appl Opt; 2020 Sep; 59(27):8279-8284. PubMed ID: 32976413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature effects on axial dispersion in a photopolymer-based holographic lens.
    Liu H; Sun G; Li M; Li L; Zhang J; Tai H; Yu D
    Appl Opt; 2023 Feb; 62(6):1475-1482. PubMed ID: 36821307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a confocal dispersion objective lens based on the GRIN lens.
    Li C; Li K; Liu J; Lv Z; Li G; Li D
    Opt Express; 2022 Nov; 30(24):44290-44299. PubMed ID: 36523107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear deformation response of a holographic sensor based on elastic poly(MMA-co-LMA) photopolymer.
    Liu H; Wei M; Li L; Wang B; Yu D; Wang W
    Opt Lett; 2021 Mar; 46(6):1249-1252. PubMed ID: 33720159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure-dependent diffraction spectrum response in photopolymer-based holographic sensor.
    Jiao X; Liu H; Wang B; Wang R; Li L
    Appl Opt; 2019 Oct; 58(30):8302-8308. PubMed ID: 31674505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-deformation response of a holographic sensor in highly stretchable polymer hydrogel.
    Yu D; Liu H; Wang R; Li L; Luo S; Lv J; Wang W
    Opt Lett; 2018 Jul; 43(13):3037-3040. PubMed ID: 29957775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of holographic sensing response in substrate-free acrylamide photopolymer.
    Zhou K; Geng Y; Liu H; Wang S; Mao D; Yu D
    Appl Opt; 2017 May; 56(13):3714-3724. PubMed ID: 28463259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications.
    Akbari H; Naydenova I; Martin S
    Appl Opt; 2014 Mar; 53(7):1343-53. PubMed ID: 24663364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a photopolymer holographic lens for collimation of light from a green light-emitting diode.
    Keshri S; Murphy K; Toal V; Naydenova I; Martin S
    Appl Opt; 2018 Aug; 57(22):E163-E172. PubMed ID: 30117852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved chromatic confocal displacement-sensor based on a spatial-bandpass-filter and an X-shaped fiber-coupler.
    Bai J; Li X; Zhou Q; Ni K; Wang X
    Opt Express; 2019 Apr; 27(8):10961-10973. PubMed ID: 31052948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of temperature-induced spectrum characterization in a holographic sensor based on N-isopropylacrylamide photopolymer hydrogel.
    Liu H; Yu D; Zhou K; Wang S; Luo S; Wang W; Song Q
    Appl Opt; 2017 Nov; 56(32):9006-9013. PubMed ID: 29131186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatic Confocal Displacement Sensor with Optimized Dispersion Probe and Modified Centroid Peak Extraction Algorithm.
    Bai J; Li X; Wang X; Zhou Q; Ni K
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shrinkage during holographic recording in photopolymer films determined by holographic interferometry.
    Moothanchery M; Bavigadda V; Toal V; Naydenova I
    Appl Opt; 2013 Dec; 52(35):8519-27. PubMed ID: 24513896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm.
    Sato A; Scepanovic M; Kostuk RK
    Appl Opt; 2003 Feb; 42(5):778-84. PubMed ID: 12593479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fiber-Based Chromatic Dispersion Probe for Simultaneous Measurement of Dual-Axis Absolute and Relative Displacement.
    Zhao R; Chen C; Xiong X; Chen YL; Ju BF
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing spatial uniformity of tensile deformation with an elastic polymer based holographic sensor.
    Yu D; Liu Q; Liu H; Luo S; Wei M; Li L; Wang W
    Opt Lett; 2021 Sep; 46(18):4438-4441. PubMed ID: 34525016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-way shift of wavelength in holographic sensing of organic vapor in nanozeolites dispersed acrylamide photopolymer.
    Mao D; Geng Y; Liu H; Zhou K; Xian L; Yu D
    Appl Opt; 2016 Aug; 55(23):6212-21. PubMed ID: 27534461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications.
    Marín-Sáez J; Atencia J; Chemisana D; Collados MV
    Opt Express; 2016 Mar; 24(6):A720-30. PubMed ID: 27136889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatic confocal measurement method using a phase Fresnel zone plate.
    Liu T; Wang J; Liu Q; Hu J; Wang Z; Wan C; Yang S
    Opt Express; 2022 Jan; 30(2):2390-2401. PubMed ID: 35209380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.