These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
583 related articles for article (PubMed ID: 31305980)
1. Alloying: A Platform for Metallic Materials with On-Demand Optical Response. Rebello Sousa Dias M; Leite MS Acc Chem Res; 2019 Oct; 52(10):2881-2891. PubMed ID: 31305980 [TBL] [Abstract][Full Text] [Related]
2. Plasmonic Surface Lattice Resonances: Theory and Computation. Cherqui C; Bourgeois MR; Wang D; Schatz GC Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203 [TBL] [Abstract][Full Text] [Related]
4. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
5. Magnesium for Dynamic Nanoplasmonics. Duan X; Liu N Acc Chem Res; 2019 Jul; 52(7):1979-1989. PubMed ID: 31246401 [TBL] [Abstract][Full Text] [Related]
6. Plasmonic Metamaterials for Nanochemistry and Sensing. Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511 [TBL] [Abstract][Full Text] [Related]
7. Control of hot-carrier relaxation time in Au-Ag thin films through alloying. Memarzadeh S; Palm KJ; Murphy TE; Leite MS; Munday JN Opt Express; 2020 Oct; 28(22):33528-33537. PubMed ID: 33115013 [TBL] [Abstract][Full Text] [Related]
8. Chemical Interface Damping of Surface Plasmon Resonances. Lee SA; Link S Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547 [TBL] [Abstract][Full Text] [Related]
9. Nanoporous gold-alumina core-shell films with tunable optical properties. Qian L; Shen W; Shen B; Qin GW; Das B Nanotechnology; 2010 Jul; 21(30):305705. PubMed ID: 20603536 [TBL] [Abstract][Full Text] [Related]
10. Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances. Lin L; Roberts A Opt Express; 2011 Jan; 19(3):2626-33. PubMed ID: 21369083 [TBL] [Abstract][Full Text] [Related]
11. Surface plasmonic effects on organic solar cells. Uddin A; Yang X J Nanosci Nanotechnol; 2014 Feb; 14(2):1099-119. PubMed ID: 24749415 [TBL] [Abstract][Full Text] [Related]
12. Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures. Verma S; Pathak AK; Rahman BMA Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675314 [TBL] [Abstract][Full Text] [Related]
13. Recent developments and applications of hybrid surface plasmon resonance interfaces in optical sensing. Gao S; Koshizaki N Anal Bioanal Chem; 2011 Jan; 399(1):91-101. PubMed ID: 20960154 [TBL] [Abstract][Full Text] [Related]
14. One-Dimensional Dielectric/Metallic Hybrid Materials for Photonic Applications. Li YJ; Xiong X; Zou CL; Ren XF; Zhao YS Small; 2015 Aug; 11(31):3728-43. PubMed ID: 25963844 [TBL] [Abstract][Full Text] [Related]
15. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis. Wy Y; Jung H; Hong JW; Han SW Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Localized Surface Plasmon Resonance of Fully Alloyed AgAuPdPt, AgAuPt, AuPt, AgPt, and Pt Nanocrystals: Systematical Investigation on the Morphological and LSPR Properties of Mono Kunwar S; Pandey P; Lee J ACS Omega; 2019 Oct; 4(17):17340-17351. PubMed ID: 31656907 [TBL] [Abstract][Full Text] [Related]
17. Antenna-load interactions at optical frequencies: impedance matching to quantum systems. Olmon RL; Raschke MB Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849 [TBL] [Abstract][Full Text] [Related]
18. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. Li Z; Butun S; Aydin K ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803 [TBL] [Abstract][Full Text] [Related]