These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 31305989)

  • 21. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting.
    Tong X; Liu S; Crittenden J; Chen Y
    ACS Nano; 2021 Apr; 15(4):5838-5860. PubMed ID: 33844502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting.
    Laucirica G; Toimil-Molares ME; Trautmann C; Marmisollé W; Azzaroni O
    Chem Sci; 2021 Oct; 12(39):12874-12910. PubMed ID: 34745520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Performance Osmotic Power Generators Based on the 1D/2D Hybrid Nanochannel System.
    Dong Y; Zhao Z; Zhao J; Guo Z; Du G; Sun Y; He D; Duan J; Liu J; Yao H
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29197-29212. PubMed ID: 35704847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compressible Ionized Natural 3D Interconnected Loofah Membrane for Salinity Gradient Power Generation.
    Luan P; Zhao Y; Li Q; Cao D; Wang Y; Sun X; Liu C; Zhu H
    Small; 2022 Jan; 18(2):e2104320. PubMed ID: 34747120
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single Mesopores with High Surface Charges as Ultrahigh Performance Osmotic Power Generators.
    Gao M; Tsai PC; Su YS; Peng PH; Yeh LH
    Small; 2020 Dec; 16(48):e2006013. PubMed ID: 33155434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators.
    Bian G; Pan N; Luan Z; Sui X; Fan W; Xia Y; Sui K; Jiang L
    Angew Chem Int Ed Engl; 2021 Sep; 60(37):20294-20300. PubMed ID: 34265152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered Cellulose Nanofiber Membranes with Ultrathin Low-Dimensional Carbon Material Layers for Photothermal-Enhanced Osmotic Energy Conversion.
    Luo Q; Liu P; Fu L; Hu Y; Yang L; Wu W; Kong XY; Jiang L; Wen L
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13223-13230. PubMed ID: 35262329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion.
    Zhao Y; Wang J; Kong XY; Xin W; Zhou T; Qian Y; Yang L; Pang J; Jiang L; Wen L
    Natl Sci Rev; 2020 Aug; 7(8):1349-1359. PubMed ID: 34692163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrathin 2D Ti
    Zhang H; Wang Z; Shen Y; Mu P; Wang Q; Li J
    J Colloid Interface Sci; 2020 Mar; 561():861-869. PubMed ID: 31767398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Dimensional Nanofluidic Membranes with Intercalated In-Plane Shortcuts for High-Performance Blue Energy Harvesting.
    Yan PP; Chen XC; Liang ZX; Fang YP; Yao J; Lu CX; Cai Y; Jiang L
    Small; 2023 Jan; 19(4):e2205003. PubMed ID: 36424182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pushing Rubbery Polymer Membranes To Be Economic for CO
    Shamsabadi AA; Isfahani AP; Salestan SK; Rahimpour A; Ghalei B; Sivaniah E; Soroush M
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3984-3992. PubMed ID: 31874026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-performance silk-based hybrid membranes employed for osmotic energy conversion.
    Xin W; Zhang Z; Huang X; Hu Y; Zhou T; Zhu C; Kong XY; Jiang L; Wen L
    Nat Commun; 2019 Aug; 10(1):3876. PubMed ID: 31462636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane.
    Gao Z; Sun Z; Ahmad M; Liu Y; Wei H; Wang S; Jin Y
    Carbohydr Polym; 2022 Mar; 280():119023. PubMed ID: 35027125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Miniaturized Salinity Gradient Energy Harvesting Devices.
    Hsu WS; Preet A; Lin TY; Lin TE
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Ionic Diode Covalent Organic Framework Membrane for Efficient Osmotic Energy Conversion.
    Cao L; Chen IC; Liu X; Li Z; Zhou Z; Lai Z
    ACS Nano; 2022 Nov; 16(11):18910-18920. PubMed ID: 36283039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Assembled Hydrophobic/Hydrophilic Porphyrin-Ti
    Zhang B; Gu Q; Wang C; Gao Q; Guo J; Wong PW; Liu CT; An AK
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3762-3770. PubMed ID: 33463155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Janus Metal-Organic Framework Membranes Boosting the Osmotic Energy Harvesting.
    Li ZQ; Zhu GL; Mo RJ; Wu MY; Ding XL; Huang LQ; Wu ZQ; Xia XH
    ACS Appl Mater Interfaces; 2023 May; 15(19):23922-23930. PubMed ID: 37145874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free-Standing Covalent Organic Framework Membrane for High-Efficiency Salinity Gradient Energy Conversion.
    Hou S; Ji W; Chen J; Teng Y; Wen L; Jiang L
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):9925-9930. PubMed ID: 33527640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis.
    Ouyang W; Wang W; Zhang H; Wu W; Li Z
    Nanotechnology; 2013 Aug; 24(34):345401. PubMed ID: 23899953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.