These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 31306040)

  • 21. Understanding How Virtual Reality Can Support Mindfulness Practice: Mixed Methods Study.
    Seabrook E; Kelly R; Foley F; Theiler S; Thomas N; Wadley G; Nedeljkovic M
    J Med Internet Res; 2020 Mar; 22(3):e16106. PubMed ID: 32186519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BioMove: Biometric User Identification from Human Kinesiological Movements for Virtual Reality Systems.
    Olade I; Fleming C; Liang HN
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of an immersive simulator for assisted power wheelchair driving.
    Devigne L; Babel M; Nouviale F; Narayanan VK; Pasteau F; Gallien P
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():995-1000. PubMed ID: 28813951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring Gaze Dynamics in Virtual Reality through Multiscale Entropy Analysis.
    Zandi S; Luhan G
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The actor-observer effect in virtual reality presentations.
    Larsson P; Västfjäll D; Kleiner M
    Cyberpsychol Behav; 2001 Apr; 4(2):239-46. PubMed ID: 11710250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motion sickness and sense of presence in a virtual reality environment developed for manual wheelchair users, with three different approaches.
    Salimi Z; Ferguson-Pell MW
    PLoS One; 2021; 16(8):e0255898. PubMed ID: 34411151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the Reliability and Validity of Three Novel Virtual Reality Environments With Different Approaches to Simulate Wheelchair Maneuvers.
    Salimi Z; Ferguson-Pell M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):514-522. PubMed ID: 30716041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Impact of Avatar Personalization and Immersion on Virtual Body Ownership, Presence, and Emotional Response.
    Waltemate T; Gall D; Roth D; Botsch M; Latoschik ME
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1643-1652. PubMed ID: 29543180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geospatial assistive technologies: potential usability criteria identified from manual wheelchair users.
    Prémont MÉ; Vincent C; Mostafavi MA
    Disabil Rehabil Assist Technol; 2020 Nov; 15(8):844-855. PubMed ID: 31226889
    [No Abstract]   [Full Text] [Related]  

  • 31. Highly immersive virtual reality laparoscopy simulation: development and future aspects.
    Huber T; Wunderling T; Paschold M; Lang H; Kneist W; Hansen C
    Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):281-290. PubMed ID: 29151194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review on ergonomics evaluations of virtual reality.
    Chen Y; Wu Z
    Work; 2023; 74(3):831-841. PubMed ID: 36442175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. User Experience Evaluation in Shared Interactive Virtual Reality.
    Guertin-Lahoud S; Coursaris CK; Sénécal S; Léger PM
    Cyberpsychol Behav Soc Netw; 2023 Apr; 26(4):263-272. PubMed ID: 37071640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D virtual reality vs. 2D desktop registration user interface comparison.
    Bueckle A; Buehling K; Shih PC; Börner K
    PLoS One; 2021; 16(10):e0258103. PubMed ID: 34705835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Virtual reality-based wheelchair simulators: A scoping review.
    Arlati S; Colombo V; Ferrigno G; Sacchetti R; Sacco M
    Assist Technol; 2020 Nov; 32(6):294-305. PubMed ID: 30615571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual vs. real: exploring perceptual, cognitive and affective dimensions in design product experiences.
    Pizzolante M; Bartolotta S; Sarcinella ED; Chirico A; Gaggioli A
    BMC Psychol; 2024 Jan; 12(1):10. PubMed ID: 38167121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Awareness of the real-world environment when using augmented reality head-mounted display.
    Aromaa S; Väätänen A; Aaltonen I; Goriachev V; Helin K; Karjalainen J
    Appl Ergon; 2020 Oct; 88():103145. PubMed ID: 32421637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporating Situation Awareness Cues in Virtual Reality for Users in Dynamic in-Vehicle Environments.
    Fereydooni N; Tenenboim E; Walker BN; Peeta S
    IEEE Trans Vis Comput Graph; 2022 Nov; 28(11):3865-3873. PubMed ID: 36048985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Head movements and simulator sickness generated by a virtual environment.
    Walker AD; Muth ER; Switzer FS; Hoover A
    Aviat Space Environ Med; 2010 Oct; 81(10):929-34. PubMed ID: 20922884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of fidelity: how expert behavior changes in a virtual reality environment.
    Ioannou I; Avery A; Zhou Y; Szudek J; Kennedy G; O'Leary S
    Laryngoscope; 2014 Sep; 124(9):2144-50. PubMed ID: 24715702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.