BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 31306361)

  • 1. Comparison of Diagnostic Power of Optic Nerve Head and Posterior Sclera Configuration Parameters on Myopic Normal Tension Glaucoma.
    Kim YC; Cho BJ; Jung KI; Park CK
    J Glaucoma; 2019 Sep; 28(9):834-842. PubMed ID: 31306361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of Scleral Deformation Around the Optic Nerve Head With Central Visual Function in Normal-Tension Glaucoma and Myopia.
    Jeon SJ; Park HL; Kim YC; Kim EK; Park CK
    Am J Ophthalmol; 2020 Sep; 217():287-296. PubMed ID: 32387433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Optic Nerve Head Tilt on Visual Field Defects in Myopic Normal Tension Glaucoma: The Intereye Comparison Study.
    Choi JH; Han JC; Kee C
    J Glaucoma; 2019 Apr; 28(4):341-346. PubMed ID: 30624389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Torsion of the optic nerve head is a prominent feature of normal-tension glaucoma.
    Park HY; Lee KI; Lee K; Shin HY; Park CK
    Invest Ophthalmol Vis Sci; 2014 Nov; 56(1):156-63. PubMed ID: 25425302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Characteristics of Deep Optic Nerve Head Morphology in Myopic Normal Tension Glaucoma.
    Han JC; Lee EJ; Kim SB; Kee C
    Invest Ophthalmol Vis Sci; 2017 May; 58(5):2695-2704. PubMed ID: 28538978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optic disc torsion direction predicts the location of glaucomatous damage in normal-tension glaucoma patients with myopia.
    Park HY; Lee K; Park CK
    Ophthalmology; 2012 Sep; 119(9):1844-51. PubMed ID: 22595297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia.
    Lopilly Park HY; Lee NY; Choi JA; Park CK
    Am J Ophthalmol; 2014 Apr; 157(4):876-84. PubMed ID: 24412142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Shape of Posterior Sclera as a Biometric Signature in Open-angle Glaucoma: An Intereye Comparison Study.
    Kim YC; Koo YH; Bin Hwang H; Kang KD
    J Glaucoma; 2020 Oct; 29(10):890-898. PubMed ID: 32555059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Posterior Sclera on Glaucoma Progression in Treated Myopic Normal-Tension Glaucoma Using Reconstructed Optical Coherence Tomographic Images.
    Kim YC; Koo YH; Jung KI; Park CK
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):2198-2207. PubMed ID: 31108550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different Disc Characteristics Associated With High Myopia and the Location of Glaucomatous Damage in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma.
    Lan YW; Chang SY; Sun FJ; Hsieh JW
    J Glaucoma; 2019 Jun; 28(6):519-528. PubMed ID: 30789526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posterior staphyloma is related to optic disc morphology and the location of visual field defect in normal tension glaucoma patients with myopia.
    Park HY; Jung Y; Park CK
    Eye (Lond); 2015 Mar; 29(3):333-41. PubMed ID: 25376120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The height of the posterior staphyloma and corneal hysteresis is associated with the scleral thickness at the staphyloma region in highly myopic normal-tension glaucoma eyes.
    Park JH; Choi KR; Kim CY; Kim SS
    Br J Ophthalmol; 2016 Sep; 100(9):1251-6. PubMed ID: 26659712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the risk of parafoveal scotoma in myopic normal tension glaucoma: role of optic disc tilt and rotation.
    Sung MS; Heo H; Ji YS; Park SW
    Eye (Lond); 2017 Jul; 31(7):1051-1059. PubMed ID: 28282064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma.
    Li L; Bian A; Cheng G; Zhou Q
    Acta Ophthalmol; 2016 Sep; 94(6):e492-500. PubMed ID: 27009574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disc Torsion and Vertical Disc Tilt Are Related to Subfoveal Scleral Thickness in Open-Angle Glaucoma Patients With Myopia.
    Park HY; Choi SI; Choi JA; Park CK
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4927-35. PubMed ID: 26225633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between optic nerve head deformation and visual field defects in myopic eyes with primary open-angle glaucoma.
    Hung CH; Lee SH; Lin SY; Lin SL; Chen YC
    PLoS One; 2018; 13(12):e0209755. PubMed ID: 30596728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progressive Optic Disc Tilt in Young Myopic Glaucomatous Eyes.
    Yoon JY; Sung KR; Yun SC; Shin JW
    Korean J Ophthalmol; 2019 Dec; 33(6):520-527. PubMed ID: 31833249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia.
    Lee JE; Sung KR; Park JM; Yoon JY; Kang SY; Park SB; Koo HJ
    Graefes Arch Clin Exp Ophthalmol; 2017 Mar; 255(3):591-598. PubMed ID: 27837279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of Angle Width With Progression of Normal-Tension Glaucoma: A Minimum 7-Year Follow-up Study.
    Ha A; Kim YK; Jeoung JW; Kim DM; Park KH
    JAMA Ophthalmol; 2019 Jan; 137(1):13-20. PubMed ID: 30326036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optic disc tilt direction affects regional visual field progression rates in myopic eyes with open-angle glaucoma.
    Lee JR; Lee J; Lee JE; Lee JY; Kook MS
    Graefes Arch Clin Exp Ophthalmol; 2016 Nov; 254(11):2267-2276. PubMed ID: 27714512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.