These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31306421)

  • 1. Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation.
    Cazin N; Llofriu Alonso M; Scleidorovich Chiodi P; Pelc T; Harland B; Weitzenfeld A; Fellous JM; Dominey PF
    PLoS Comput Biol; 2019 Jul; 15(7):e1006624. PubMed ID: 31306421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States.
    Tang W; Shin JD; Frank LM; Jadhav SP
    J Neurosci; 2017 Dec; 37(49):11789-11805. PubMed ID: 29089440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Awake Hippocampal-Prefrontal Replay for Spatial Learning and Memory-Guided Decision Making.
    Shin JD; Tang W; Jadhav SP
    Neuron; 2019 Dec; 104(6):1110-1125.e7. PubMed ID: 31677957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for navigation in unknown environments based on a reservoir of hippocampal sequences.
    Leibold C
    Neural Netw; 2020 Apr; 124():328-342. PubMed ID: 32036230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse Replay of Hippocampal Place Cells Is Uniquely Modulated by Changing Reward.
    Ambrose RE; Pfeiffer BE; Foster DJ
    Neuron; 2016 Sep; 91(5):1124-1136. PubMed ID: 27568518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observational learning promotes hippocampal remote awake replay toward future reward locations.
    Mou X; Pokhrel A; Suresh P; Ji D
    Neuron; 2022 Mar; 110(5):891-902.e7. PubMed ID: 34965381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling awake hippocampal reactivations with model-based bidirectional search.
    Khamassi M; Girard B
    Biol Cybern; 2020 Apr; 114(2):231-248. PubMed ID: 32065253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model.
    Johnson A; Redish AD
    Neural Netw; 2005 Nov; 18(9):1163-71. PubMed ID: 16198539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent network model for learning goal-directed sequences through reverse replay.
    Haga T; Fukai T
    Elife; 2018 Jul; 7():. PubMed ID: 29969098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A goal-directed spatial navigation model using forward trajectory planning based on grid cells.
    Erdem UM; Hasselmo M
    Eur J Neurosci; 2012 Mar; 35(6):916-31. PubMed ID: 22393918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-learning Hippocampal Replay Selectively Reinforces Spatial Memory for Highly Rewarded Locations.
    Michon F; Sun JJ; Kim CY; Ciliberti D; Kloosterman F
    Curr Biol; 2019 May; 29(9):1436-1444.e5. PubMed ID: 31031113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reward revaluation biases hippocampal replay content away from the preferred outcome.
    Carey AA; Tanaka Y; van der Meer MAA
    Nat Neurosci; 2019 Sep; 22(9):1450-1459. PubMed ID: 31427771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching.
    Kaefer K; Nardin M; Blahna K; Csicsvari J
    Neuron; 2020 Apr; 106(1):154-165.e6. PubMed ID: 32032512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampal replay is not a simple function of experience.
    Gupta AS; van der Meer MA; Touretzky DS; Redish AD
    Neuron; 2010 Mar; 65(5):695-705. PubMed ID: 20223204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of hippocampal place cell activity to learning and formation of goal-directed navigation in rats.
    Kobayashi T; Tran AH; Nishijo H; Ono T; Matsumoto G
    Neuroscience; 2003; 117(4):1025-35. PubMed ID: 12654354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational model of learning flexible navigation in a maze by layout-conforming replay of place cells.
    Gao Y
    Front Comput Neurosci; 2023; 17():1053097. PubMed ID: 36846726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritized experience replays on a hippocampal predictive map for learning.
    Igata H; Ikegaya Y; Sasaki T
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus.
    Yang M; Logothetis NK; Eschenko O
    J Neurosci; 2019 Jan; 39(3):434-444. PubMed ID: 30459228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies.
    Ellwood IT; Patel T; Wadia V; Lee AT; Liptak AT; Bender KJ; Sohal VS
    J Neurosci; 2017 Aug; 37(35):8315-8329. PubMed ID: 28739583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.