BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 31306505)

  • 1. The many types of heterogeneity in replicative senescence.
    Xu Z; Teixeira MT
    Yeast; 2019 Nov; 36(11):637-648. PubMed ID: 31306505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The asymmetry of telomere replication contributes to replicative senescence heterogeneity.
    Bourgeron T; Xu Z; Doumic M; Teixeira MT
    Sci Rep; 2015 Oct; 5():15326. PubMed ID: 26468778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to DNA damage checkpoint in senescent telomerase-negative cells promotes genome instability.
    Coutelier H; Xu Z; Morisse MC; Lhuillier-Akakpo M; Pelet S; Charvin G; Dubrana K; Teixeira MT
    Genes Dev; 2018 Dec; 32(23-24):1499-1513. PubMed ID: 30463903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The length of the shortest telomere as the major determinant of the onset of replicative senescence.
    Xu Z; Duc KD; Holcman D; Teixeira MT
    Genetics; 2013 Aug; 194(4):847-57. PubMed ID: 23733785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of MEC1 suppresses the replicative senescence of the cdc13-2 mutant in Saccharomyces cerevisiae.
    Yao Y; Fekete-Szücs E; Rosas Bringas FR; Chang M
    G3 (Bethesda); 2023 May; 13(5):. PubMed ID: 36947417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A subtelomeric region affects telomerase-negative replicative senescence in Saccharomyces cerevisiae.
    Jolivet P; Serhal K; Graf M; Eberhard S; Xu Z; Luke B; Teixeira MT
    Sci Rep; 2019 Feb; 9(1):1845. PubMed ID: 30755624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible DNA damage checkpoint activation at the presenescent stage in telomerase-deficient cells of Saccharomyces cerevisiae.
    Miura A; Itakura E; Matsuura A
    Genes Cells; 2019 Aug; 24(8):546-558. PubMed ID: 31145520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assessment of changes in cell growth, size and morphology during telomere-initiated cellular senescence in Saccharomyces cerevisiae.
    Ghanem NZ; Malla SRL; Araki N; Lewis LK
    Exp Cell Res; 2019 Aug; 381(1):18-28. PubMed ID: 31075257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replication stress as a source of telomere recombination during replicative senescence in Saccharomyces cerevisiae.
    Simon MN; Churikov D; Géli V
    FEMS Yeast Res; 2016 Nov; 16(7):. PubMed ID: 27683094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Telomere shortening causes distinct cell division regimes during replicative senescence in Saccharomyces cerevisiae.
    Martin H; Doumic M; Teixeira MT; Xu Z
    Cell Biosci; 2021 Oct; 11(1):180. PubMed ID: 34627377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Senescence; an endogenous anticancer mechanism.
    Vargas J; Feltes BC; Poloni Jde F; Lenz G; Bonatto D
    Front Biosci (Landmark Ed); 2012 Jun; 17(7):2616-43. PubMed ID: 22652801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of Telomere Biology in Cell Senescence, Replicative and Chronological Ageing.
    Liu J; Wang L; Wang Z; Liu JP
    Cells; 2019 Jan; 8(1):. PubMed ID: 30650660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation in replicative senescence: a risky business.
    Coutelier H; Xu Z
    Curr Genet; 2019 Jun; 65(3):711-716. PubMed ID: 30637477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Replicative senescence as a model of aging: the role of oxidative stress and telomere shortening--an overview].
    Saretzki G; von Zglinicki T
    Z Gerontol Geriatr; 1999 Apr; 32(2):69-75. PubMed ID: 10408009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. To Fix or Not to Fix: Maintenance of Chromosome Ends Versus Repair of DNA Double-Strand Breaks.
    Casari E; Gnugnoli M; Rinaldi C; Pizzul P; Colombo CV; Bonetti D; Longhese MP
    Cells; 2022 Oct; 11(20):. PubMed ID: 36291091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telomeres, the nucleolus and aging.
    Johnson FB; Marciniak RA; Guarente L
    Curr Opin Cell Biol; 1998 Jun; 10(3):332-8. PubMed ID: 9640533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homologous recombination-mediated irreversible genome damage underlies telomere-induced senescence.
    Ghadaouia S; Olivier MA; Martinez A; Kientega T; Qin J; Lambert-Lanteigne P; Cardin GB; Autexier C; Malaquin N; Rodier F
    Nucleic Acids Res; 2021 Nov; 49(20):11690-11707. PubMed ID: 34725692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA damage in telomeres and mitochondria during cellular senescence: is there a connection?
    Passos JF; Saretzki G; von Zglinicki T
    Nucleic Acids Res; 2007; 35(22):7505-13. PubMed ID: 17986462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple genetic pathways regulate replicative senescence in telomerase-deficient yeast.
    Ballew BJ; Lundblad V
    Aging Cell; 2013 Aug; 12(4):719-27. PubMed ID: 23672410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tieing together loose ends: telomere instability in cancer and aging.
    Borges G; Criqui M; Harrington L
    Mol Oncol; 2022 Sep; 16(18):3380-3396. PubMed ID: 35920280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.