BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 31306718)

  • 1. Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition.
    Hu G; Zhang Q; Waters AB; Li H; Zhang C; Wu J; Cong F; Nickerson LD
    J Neurosci Methods; 2019 Sep; 325():108359. PubMed ID: 31306718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hierarchical independent component analysis model for longitudinal neuroimaging studies.
    Wang Y; Guo Y
    Neuroimage; 2019 Apr; 189():380-400. PubMed ID: 30639837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data.
    Liu C; JaJa J; Pessoa L
    Neuroimage; 2018 Apr; 169():363-373. PubMed ID: 29246846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of diversity in data-driven analysis of multi-subject fMRI data: Comparison of approaches based on independence and sparsity using global performance metrics.
    Long Q; Bhinge S; Levin-Schwartz Y; Boukouvalas Z; Calhoun VD; Adalı T
    Hum Brain Mapp; 2019 Feb; 40(2):489-504. PubMed ID: 30240499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-way parallel group independent component analysis: Fusion of spatial and spatiotemporal magnetic resonance imaging data.
    Qi S; Silva RF; Zhang D; Plis SM; Miller R; Vergara VM; Jiang R; Zhi D; Sui J; Calhoun VD
    Hum Brain Mapp; 2022 Mar; 43(4):1280-1294. PubMed ID: 34811846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel group ICA+ICA: Joint estimation of linked functional network variability and structural covariation with application to schizophrenia.
    Qi S; Sui J; Chen J; Liu J; Jiang R; Silva R; Iraji A; Damaraju E; Salman M; Lin D; Fu Z; Zhi D; Turner JA; Bustillo J; Ford JM; Mathalon DH; Voyvodic J; McEwen S; Preda A; Belger A; Potkin SG; Mueller BA; Adali T; Calhoun VD
    Hum Brain Mapp; 2019 Sep; 40(13):3795-3809. PubMed ID: 31099151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unified framework for group independent component analysis for multi-subject fMRI data.
    Guo Y; Pagnoni G
    Neuroimage; 2008 Sep; 42(3):1078-93. PubMed ID: 18650105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ICA based approach for steady-state and transient analysis of task fMRI data: Application to study of thermal pain response.
    Song X; Bhinge S; Quiton RL; Adalı T
    J Neurosci Methods; 2019 Oct; 326():108356. PubMed ID: 31310824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined spatiotemporal ICA (stICA) for continuous and dynamic lag structure analysis of MREG data.
    Raatikainen V; Huotari N; Korhonen V; Rasila A; Kananen J; Raitamaa L; Keinänen T; Kantola J; Tervonen O; Kiviniemi V
    Neuroimage; 2017 Mar; 148():352-363. PubMed ID: 28088482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCTICA: Sub-packet constrained temporal ICA method for fMRI data analysis.
    Shi Y; Zeng W
    Comput Biol Med; 2018 Nov; 102():75-85. PubMed ID: 30248514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies.
    Guo Y; Tang L
    Biometrics; 2013 Dec; 69(4):970-81. PubMed ID: 24033125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of fMRI data by blind separation of data in a tiny spatial domain into independent temporal component.
    Chen H; Yao D; Zhuo Y; Chen L
    Brain Topogr; 2003; 15(4):223-32. PubMed ID: 12866826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis.
    Cong F; Puoliväli T; Alluri V; Sipola T; Burunat I; Toiviainen P; Nandi AK; Brattico E; Ristaniemi T
    J Neurosci Methods; 2014 Feb; 223():74-84. PubMed ID: 24333752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of diversity in complex ICA algorithms for fMRI analysis.
    Du W; Levin-Schwartz Y; Fu GS; Ma S; Calhoun VD; Adalı T
    J Neurosci Methods; 2016 May; 264():129-135. PubMed ID: 26993820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting functional networks with spatial independent component analysis: the role of dimensionality, reliability and aggregation scheme.
    Esposito F; Goebel R
    Curr Opin Neurol; 2011 Aug; 24(4):378-85. PubMed ID: 21734575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evaluation of independent component analyses with an application to resting-state fMRI.
    Risk BB; Matteson DS; Ruppert D; Eloyan A; Caffo BS
    Biometrics; 2014 Mar; 70(1):224-36. PubMed ID: 24350655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.
    Wang N; Zeng W; Chen L
    J Neurosci Methods; 2013 May; 216(1):49-61. PubMed ID: 23563324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets.
    Afshin-Pour B; Grady C; Strother S
    Neuroimage; 2014 Feb; 87():363-82. PubMed ID: 24201012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.