BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31306718)

  • 21. Temporally constrained ICA with threshold and its application to fMRI data.
    Long Z; Wang Z; Zhang J; Zhao X; Yao L
    BMC Med Imaging; 2019 Jan; 19(1):6. PubMed ID: 30654748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A semi-blind online dictionary learning approach for fMRI data.
    Long Z; Liu L; Gao Z; Chen M; Yao L
    J Neurosci Methods; 2019 Jul; 323():1-12. PubMed ID: 31085215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
    Correa N; Adali T; Calhoun VD
    Magn Reson Imaging; 2007 Jun; 25(5):684-94. PubMed ID: 17540281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Latency (in)sensitive ICA. Group independent component analysis of fMRI data in the temporal frequency domain.
    Calhoun VD; Adali T; Pekar JJ; Pearlson GD
    Neuroimage; 2003 Nov; 20(3):1661-9. PubMed ID: 14642476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating the number of independent components for functional magnetic resonance imaging data.
    Li YO; Adali T; Calhoun VD
    Hum Brain Mapp; 2007 Nov; 28(11):1251-66. PubMed ID: 17274023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used?
    Esposito F; Formisano E; Seifritz E; Goebel R; Morrone R; Tedeschi G; Di Salle F
    Hum Brain Mapp; 2002 Jul; 16(3):146-57. PubMed ID: 12112768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model order effects on ICA of resting-state complex-valued fMRI data: Application to schizophrenia.
    Kuang LD; Lin QH; Gong XF; Cong F; Sui J; Calhoun VD
    J Neurosci Methods; 2018 Jul; 304():24-38. PubMed ID: 29673968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain networks, dimensionality, and global signal averaging in resting-state fMRI: Hierarchical network structure results in low-dimensional spatiotemporal dynamics.
    Gotts SJ; Gilmore AW; Martin A
    Neuroimage; 2020 Jan; 205():116289. PubMed ID: 31629827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition.
    Kuang LD; Lin QH; Gong XF; Cong F; Sui J; Calhoun VD
    J Neurosci Methods; 2015 Dec; 256():127-40. PubMed ID: 26327319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic identification of functional clusters in FMRI data using spatial dependence.
    Ma S; Correa NM; Li XL; Eichele T; Calhoun VD; Adalı T
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3406-17. PubMed ID: 21900068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. WASICA: An effective wavelet-shrinkage based ICA model for brain fMRI data analysis.
    Wang N; Zeng W; Shi Y; Ren T; Jing Y; Yin J; Yang J
    J Neurosci Methods; 2015 May; 246():75-96. PubMed ID: 25791013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Blind source separation for fMRI signals using a new independent component analysis algorithm and principal component analysis].
    Zhang W; Shi Z; Tang H; Tang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):430-3. PubMed ID: 17591275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discussion on the choice of separated components in fMRI data analysis by spatial independent component analysis.
    Chen H; Yao D
    Magn Reson Imaging; 2004 Jul; 22(6):827-33. PubMed ID: 15234451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of two exploratory data analysis methods for fMRI: unsupervised clustering versus independent component analysis.
    Meyer-Baese A; Wismueller A; Lange O
    IEEE Trans Inf Technol Biomed; 2004 Sep; 8(3):387-98. PubMed ID: 15484444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial source phase: A new feature for identifying spatial differences based on complex-valued resting-state fMRI data.
    Qiu Y; Lin QH; Kuang LD; Gong XF; Cong F; Wang YP; Calhoun VD
    Hum Brain Mapp; 2019 Jun; 40(9):2662-2676. PubMed ID: 30811773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cortex-based independent component analysis of fMRI time series.
    Formisano E; Esposito F; Di Salle F; Goebel R
    Magn Reson Imaging; 2004 Dec; 22(10):1493-504. PubMed ID: 15707799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Consistency of independent component analysis for FMRI.
    Zhao W; Li H; Hu G; Hao Y; Zhang Q; Wu J; Frederick BB; Cong F
    J Neurosci Methods; 2021 Mar; 351():109013. PubMed ID: 33316320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A two-step super-Gaussian independent component analysis approach for fMRI data.
    Ge R; Yao L; Zhang H; Long Z
    Neuroimage; 2015 Sep; 118():344-58. PubMed ID: 26057592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multivariate analysis of neuronal interactions in the generalized partial least squares framework: simulations and empirical studies.
    Lin FH; McIntosh AR; Agnew JA; Eden GF; Zeffiro TA; Belliveau JW
    Neuroimage; 2003 Oct; 20(2):625-42. PubMed ID: 14568440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unified SPM-ICA for fMRI analysis.
    Hu D; Yan L; Liu Y; Zhou Z; Friston KJ; Tan C; Wu D
    Neuroimage; 2005 Apr; 25(3):746-55. PubMed ID: 15808976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.