These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 31306819)
21. Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water. Kamagate M; Assadi AA; Kone T; Giraudet S; Coulibaly L; Hanna K Chemosphere; 2018 Mar; 195():847-853. PubMed ID: 29289913 [TBL] [Abstract][Full Text] [Related]
22. Kinetic, equilibrium, and thermodynamic performance of sulfonamides adsorption onto graphene. Zhuang S; Zhu X; Wang J Environ Sci Pollut Res Int; 2018 Dec; 25(36):36615-36623. PubMed ID: 30377960 [TBL] [Abstract][Full Text] [Related]
23. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. Jiang Y; Ran J; Mao K; Yang X; Zhong L; Yang C; Feng X; Zhang H Ecotoxicol Environ Saf; 2022 May; 236():113464. PubMed ID: 35395600 [TBL] [Abstract][Full Text] [Related]
24. Adsorption of tricresyl phosphate onto graphene nanomaterials from aqueous solution. Liu J; Xia S; Lü X; Shen H Water Sci Technol; 2017 Sep; 76(5-6):1565-1573. PubMed ID: 28953482 [TBL] [Abstract][Full Text] [Related]
25. Graphene-based nanomaterials for adsorption of iodinated X-ray contrast media from contaminated water: A comparative study. Qi N; Dong J; Cai X; Fan H; Zhang Y; Liu C; Wang H; Zhang S Chemosphere; 2024 Sep; 363():142915. PubMed ID: 39038712 [TBL] [Abstract][Full Text] [Related]
26. Removal of antibiotics from aqueous solutions by nanoparticles: a systematic review and meta-analysis. Malakootian M; Yaseri M; Faraji M Environ Sci Pollut Res Int; 2019 Mar; 26(9):8444-8458. PubMed ID: 30706272 [TBL] [Abstract][Full Text] [Related]
27. Removal of graphene oxide nanomaterials from aqueous media via coagulation: Effects of water chemistry and natural organic matter. Duan L; Hao R; Xu Z; He X; Adeleye AS; Li Y Chemosphere; 2017 Feb; 168():1051-1057. PubMed ID: 27816284 [TBL] [Abstract][Full Text] [Related]
28. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. Chen H; Gao B; Li H J Hazard Mater; 2015 Jan; 282():201-7. PubMed ID: 24755346 [TBL] [Abstract][Full Text] [Related]
29. Graphene-based nanomaterials for the removal of emerging contaminants of concern from water and their potential adaptation for point-of-use applications. Abioye SO; Majooni Y; Moayedi M; Rezvani H; Kapadia M; Yousefi N Chemosphere; 2024 May; 355():141728. PubMed ID: 38499073 [TBL] [Abstract][Full Text] [Related]
30. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Xu J; Wang L; Zhu Y Langmuir; 2012 Jun; 28(22):8418-25. PubMed ID: 22571829 [TBL] [Abstract][Full Text] [Related]
31. Functionalized graphene nanosheets as absorbent for copper (II) removal from water. Cao ML; Li Y; Yin H; Shen S Ecotoxicol Environ Saf; 2019 May; 173():28-36. PubMed ID: 30753938 [TBL] [Abstract][Full Text] [Related]
32. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Xu J; Cao Z; Zhang Y; Yuan Z; Lou Z; Xu X; Wang X Chemosphere; 2018 Mar; 195():351-364. PubMed ID: 29272803 [TBL] [Abstract][Full Text] [Related]
33. Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. Liu P; Wu Z; Abramova AV; Cravotto G Ultrason Sonochem; 2021 Jun; 74():105566. PubMed ID: 33975189 [TBL] [Abstract][Full Text] [Related]
34. Effect of molecular structure on the adsorption behavior of sulfanilamide antibiotics on crumpled graphene balls. Fu H; Gray KA Water Res; 2023 Aug; 242():120177. PubMed ID: 37348418 [TBL] [Abstract][Full Text] [Related]
35. Effective Removal of Tetracycline Antibiotics from Water using Hybrid Carbon Membranes. Liu MK; Liu YY; Bao DD; Zhu G; Yang GH; Geng JF; Li HT Sci Rep; 2017 Mar; 7():43717. PubMed ID: 28255174 [TBL] [Abstract][Full Text] [Related]
36. Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel. Ma J; Yang M; Yu F; Zheng J Sci Rep; 2015 Sep; 5():13578. PubMed ID: 26336922 [TBL] [Abstract][Full Text] [Related]
37. A review on adsorption of heavy metals from wastewater using carbon nanotube and graphene-based nanomaterials. Chandran DG; Muruganandam L; Biswas R Environ Sci Pollut Res Int; 2023 Nov; 30(51):110010-110046. PubMed ID: 37804379 [TBL] [Abstract][Full Text] [Related]
38. Three-dimensional graphene-based adsorbents in sewage disposal: a review. Chen L; Han Q; Li W; Zhou Z; Fang Z; Xu Z; Wang Z; Qian X Environ Sci Pollut Res Int; 2018 Sep; 25(26):25840-25861. PubMed ID: 30039490 [TBL] [Abstract][Full Text] [Related]
39. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Tang WW; Zeng GM; Gong JL; Liang J; Xu P; Zhang C; Huang BB Sci Total Environ; 2014 Jan; 468-469():1014-27. PubMed ID: 24095965 [TBL] [Abstract][Full Text] [Related]
40. Adsorption isotherm, kinetic and mechanism of expanded graphite for sulfadiazine antibiotics removal from aqueous solutions. Zhang L; Wang Y; Jin S; Lu Q; Ji J Environ Technol; 2017 Oct; 38(20):2629-2638. PubMed ID: 27966390 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]