These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
601 related articles for article (PubMed ID: 31307019)
1. An investigation of quantitative accuracy for deep learning based denoising in oncological PET. Lu W; Onofrey JA; Lu Y; Shi L; Ma T; Liu Y; Liu C Phys Med Biol; 2019 Aug; 64(16):165019. PubMed ID: 31307019 [TBL] [Abstract][Full Text] [Related]
2. Deep learning generation of preclinical positron emission tomography (PET) images from low-count PET with task-based performance assessment. Dutta K; Laforest R; Luo J; Jha AK; Shoghi KI Med Phys; 2024 Jun; 51(6):4324-4339. PubMed ID: 38710222 [TBL] [Abstract][Full Text] [Related]
3. Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET. Liu H; Wu J; Lu W; Onofrey JA; Liu YH; Liu C Phys Med Biol; 2020 Sep; 65(18):185006. PubMed ID: 32924973 [TBL] [Abstract][Full Text] [Related]
4. Virtual high-count PET image generation using a deep learning method. Liu J; Ren S; Wang R; Mirian N; Tsai YJ; Kulon M; Pucar D; Chen MK; Liu C Med Phys; 2022 Sep; 49(9):5830-5840. PubMed ID: 35880541 [TBL] [Abstract][Full Text] [Related]
5. Dose reduction and image enhancement in micro-CT using deep learning. Muller FM; Maebe J; Vanhove C; Vandenberghe S Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779 [TBL] [Abstract][Full Text] [Related]
6. PET image denoising using unsupervised deep learning. Cui J; Gong K; Guo N; Wu C; Meng X; Kim K; Zheng K; Wu Z; Fu L; Xu B; Zhu Z; Tian J; Liu H; Li Q Eur J Nucl Med Mol Imaging; 2019 Dec; 46(13):2780-2789. PubMed ID: 31468181 [TBL] [Abstract][Full Text] [Related]
7. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain. Manoj Doss KK; Chen JC Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121 [TBL] [Abstract][Full Text] [Related]
8. Deep learning based bilateral filtering for edge-preserving denoising of respiratory-gated PET. Maus J; Nikulin P; Hofheinz F; Petr J; Braune A; Kotzerke J; van den Hoff J EJNMMI Phys; 2024 Jul; 11(1):58. PubMed ID: 38977533 [TBL] [Abstract][Full Text] [Related]
9. Deep learning-based low-dose CT simulator for non-linear reconstruction methods. Tunissen SAM; Moriakov N; Mikerov M; Smit EJ; Sechopoulos I; Teuwen J Med Phys; 2024 Sep; 51(9):6046-6060. PubMed ID: 38843540 [TBL] [Abstract][Full Text] [Related]
10. Higher SNR PET image prediction using a deep learning model and MRI image. Liu CC; Qi J Phys Med Biol; 2019 May; 64(11):115004. PubMed ID: 30844784 [TBL] [Abstract][Full Text] [Related]
11. Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging. Liu J; Yang Y; Wernick MN; Pretorius PH; King MA Med Phys; 2021 Jan; 48(1):156-168. PubMed ID: 33145782 [TBL] [Abstract][Full Text] [Related]
12. Supervised learning with cyclegan for low-dose FDG PET image denoising. Zhou L; Schaefferkoetter JD; Tham IWK; Huang G; Yan J Med Image Anal; 2020 Oct; 65():101770. PubMed ID: 32674043 [TBL] [Abstract][Full Text] [Related]
13. Spatial adaptive and transformer fusion network (STFNet) for low-count PET blind denoising with MRI. Zhang L; Xiao Z; Zhou C; Yuan J; He Q; Yang Y; Liu X; Liang D; Zheng H; Fan W; Zhang X; Hu Z Med Phys; 2022 Jan; 49(1):343-356. PubMed ID: 34796526 [TBL] [Abstract][Full Text] [Related]
14. Image Denoising of Low-Dose PET Mouse Scans with Deep Learning: Validation Study for Preclinical Imaging Applicability. Muller FM; Vervenne B; Maebe J; Blankemeyer E; Sellmyer MA; Zhou R; Karp JS; Vanhove C; Vandenberghe S Mol Imaging Biol; 2024 Feb; 26(1):101-113. PubMed ID: 37875748 [TBL] [Abstract][Full Text] [Related]
15. Feasibility evaluation of PET scan-time reduction for diagnosing amyloid-β levels in Alzheimer's disease patients using a deep-learning-based denoising algorithm. Peng Z; Ni M; Shan H; Lu Y; Li Y; Zhang Y; Pei X; Chen Z; Xie Q; Wang S; Xu XG Comput Biol Med; 2021 Nov; 138():104919. PubMed ID: 34655898 [TBL] [Abstract][Full Text] [Related]
16. Head and neck synthetic CT generated from ultra-low-dose cone-beam CT following Image Gently Protocol using deep neural network. Yuan N; Rao S; Chen Q; Sensoy L; Qi J; Rong Y Med Phys; 2022 May; 49(5):3263-3277. PubMed ID: 35229904 [TBL] [Abstract][Full Text] [Related]
17. Deep-learning-based direct inversion for material decomposition. Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942 [TBL] [Abstract][Full Text] [Related]
19. Spatially guided nonlocal mean approach for denoising of PET images. Arabi H; Zaidi H Med Phys; 2020 Apr; 47(4):1656-1669. PubMed ID: 31955433 [TBL] [Abstract][Full Text] [Related]
20. A method to assess image quality for Low-dose PET: analysis of SNR, CNR, bias and image noise. Yan J; Schaefferkoette J; Conti M; Townsend D Cancer Imaging; 2016 Aug; 16(1):26. PubMed ID: 27565136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]