These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31307098)

  • 21. Pulmonary O2 uptake on-kinetics in sprint- and endurance-trained athletes.
    Berger NJ; Jones AM
    Appl Physiol Nutr Metab; 2007 Jun; 32(3):383-93. PubMed ID: 17510672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal aspects of the VO2 response at the power output associated with VO2peak in well trained cyclists--implications for interval training prescription.
    Laursen PB; Shing CM; Jenkins DG
    Res Q Exerc Sport; 2004 Dec; 75(4):423-8. PubMed ID: 15673041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pre-exercise acidification induced by ingestion of NH4Cl increases the magnitude of the slow component of VO2 kinetics in humans.
    Zoładź J; Duda K; Majerczak J; Emmerich J; Domański J
    J Physiol Pharmacol; 1998 Sep; 49(3):443-55. PubMed ID: 9789796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In humans the oxygen uptake slow component is reduced by prior exercise of high as well as low intensity.
    Koppo K; Bouckaert J
    Eur J Appl Physiol; 2000 Dec; 83(6):559-65. PubMed ID: 11192065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of ischemic preconditioning on economy, VO
    Kilding AE; Sequeira GM; Wood MR
    Eur J Appl Physiol; 2018 Dec; 118(12):2541-2549. PubMed ID: 30361766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic alkalosis induced by pre-exercise ingestion of NaHCO3 does not modulate the slow component of VO2 kinetics in humans.
    Zoładź JA; Duda K; Majerczak J; Domański J; Emmerich J
    J Physiol Pharmacol; 1997 Jun; 48(2):211-23. PubMed ID: 9223026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of cadence on the VO2 slow component in cycling and running in triathletes.
    Billat VL; Mille-Hamard L; Petit B; Koralsztein JP
    Int J Sports Med; 1999 Oct; 20(7):429-37. PubMed ID: 10551337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.
    Woolford SM; Withers RT; Craig NP; Bourdon PC; Stanef T; McKenzie I
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):285-91. PubMed ID: 10483797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevated baseline VO2 per se does not slow O2 uptake kinetics during work-to-work exercise transitions.
    DiMenna FJ; Bailey SJ; Vanhatalo A; Chidnok W; Jones AM
    J Appl Physiol (1985); 2010 Oct; 109(4):1148-54. PubMed ID: 20724564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of different pedal rates on oxygen uptake slow component during constant-load cycling exercise.
    Migita T; Hirakoba K
    J Sports Med Phys Fitness; 2006 Jun; 46(2):189-96. PubMed ID: 16823346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endurance training reduces end-exercise VO2 and muscle use during submaximal cycling.
    Saunders MJ; Evans EM; Arngrimsson SA; Allison JD; Cureton KJ
    Med Sci Sports Exerc; 2003 Feb; 35(2):257-62. PubMed ID: 12569214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slow upward drift of VO2 during constant-load cycling in untrained subjects.
    Camus G; Atchou G; Bruckner JC; Giezendanner D; di Prampero PE
    Eur J Appl Physiol Occup Physiol; 1988; 58(1-2):197-202. PubMed ID: 3203667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Delayed onset muscle soreness does not alter O2 uptake kinetics during heavy-intensity cycling in humans.
    Schneider DA; Berwick JP; Sabapathy S; Minahan CL
    Int J Sports Med; 2007 Jul; 28(7):550-6. PubMed ID: 17373599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validity and reliability of the Polar S710 mobile cycling powermeter.
    Millet GP; Tronche C; Fuster N; Bentley DJ; Candau R
    Int J Sports Med; 2003 Apr; 24(3):156-61. PubMed ID: 12740731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscle glycogen reduction in man: relationship between surface EMG activity and oxygen uptake kinetics during heavy exercise.
    Osborne MA; Schneider DA
    Exp Physiol; 2006 Jan; 91(1):179-89. PubMed ID: 16272265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. O2 uptake kinetics and the O2 deficit as related to exercise intensity and blood lactate.
    Barstow TJ; Casaburi R; Wasserman K
    J Appl Physiol (1985); 1993 Aug; 75(2):755-62. PubMed ID: 8226479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy expenditure of constant- and variable-intensity cycling: power meter estimates.
    Haakonssen EC; Martin DT; Burke LM; Jenkins DG
    Med Sci Sports Exerc; 2013 Sep; 45(9):1833-40. PubMed ID: 23470312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of oxygen uptake kinetics during concentric and eccentric cycle exercise.
    Perrey S; Betik A; Candau R; Rouillon JD; Hughson RL
    J Appl Physiol (1985); 2001 Nov; 91(5):2135-42. PubMed ID: 11641354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of exercise mode on the oxygen uptake kinetic response to severe-intensity exercise in prepubertal children.
    Machado FA; Guglielmo LG; Greco CC; Denadai BS
    Pediatr Exerc Sci; 2009 May; 21(2):159-70. PubMed ID: 19556622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human muscle power generating capability during cycling at different pedalling rates.
    Zoladz JA; Rademaker AC; Sargeant AJ
    Exp Physiol; 2000 Jan; 85(1):117-24. PubMed ID: 10662901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.