BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 31307713)

  • 1. Ratiometric fluorescence monitoring of α-glucosidase activity based on oxidase-like property of MnO
    Shi M; Cen Y; Xu G; Wei F; Xu X; Cheng X; Chai Y; Sohail M; Hu Q
    Anal Chim Acta; 2019 Oct; 1077():225-231. PubMed ID: 31307713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A label-free fluorescent sensor based on silicon quantum dots-MnO
    Liu J; Duan X; Wang M; Su X
    Analyst; 2019 Dec; 144(24):7398-7405. PubMed ID: 31670357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ratiometric fluorescence probe based on graphene quantum dots and o-phenylenediamine for highly sensitive detection of acetylcholinesterase activity.
    Ye M; Lin B; Yu Y; Li H; Wang Y; Zhang L; Cao Y; Guo M
    Mikrochim Acta; 2020 Aug; 187(9):511. PubMed ID: 32833082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-induced target-dependent ratiometric fluorescence sensing strategy and logic gate operation for detection of α-glucosidase activity and its inhibitor.
    Yuan X; Sun Y; Zhao P; Zhao L; Xiong Z
    Dalton Trans; 2021 Jul; 50(27):9426-9437. PubMed ID: 34132726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A ratiometric fluorescence platform based on WS
    Zhai Z; Wang W; Chai Z; Yuan Y; Zhu Q; Ge J; Li Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123959. PubMed ID: 38290280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A MnO
    An X; Chen R; Chen Q; Tan Q; Pan S; Liu H; Hu X
    Mikrochim Acta; 2021 Apr; 188(5):156. PubMed ID: 33825037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fluorescence resonance energy transfer (FRET) based "Turn-On" nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening.
    Li G; Kong W; Zhao M; Lu S; Gong P; Chen G; Xia L; Wang H; You J; Wu Y
    Biosens Bioelectron; 2016 May; 79():728-35. PubMed ID: 26774085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A colorimetric sensing strategy based on enzyme@metal-organic framework and oxidase-like IrO
    Zhong Y; Li QL; Lu M; Wang T; Yang H; He Q; Cui X; Li X; Zhao S
    Mikrochim Acta; 2020 Nov; 187(12):675. PubMed ID: 33241461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A MnO
    Lyu Y; Tao Z; Lin X; Qian P; Li Y; Wang S; Liu Y
    Anal Bioanal Chem; 2019 Jul; 411(18):4093-4101. PubMed ID: 30406417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ratiometric fluorescence sensing of glutathione by using the oxidase-mimicking activity of MnO
    Cao Y; Liu J; Zou L; Ye B; Li G
    Anal Chim Acta; 2021 Feb; 1145():46-51. PubMed ID: 33453880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasensitive colorimetric sensing strategy based on ascorbic acid triggered remarkable photoactive-nanoperoxidase for signal amplification and its application to α-glucosidase activity detection.
    Wu D; Hu N; Liu J; Fan G; Li X; Sun J; Dai C; Suo Y; Li G; Wu Y
    Talanta; 2018 Dec; 190():103-109. PubMed ID: 30172485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel "turn-on" fluorometric and magnetic bi-functional strategy for ascorbic acid sensing and in vivo imaging via carbon dots-MnO
    Wang H; Na X; Liu S; Liu H; Zhang L; Xie M; Jiang Z; Han F; Li Y; Cheng S; Tan M
    Talanta; 2019 Aug; 201():388-396. PubMed ID: 31122439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver ion-regulated ratiometric fluorescence assay for alkaline phosphatase detection based on carbon dots and o-phenylenediamine.
    Li P; Liang N; Liu C; Xia L; Qu F; Song ZL; Kong RM
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121682. PubMed ID: 35926289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The determination of α-glucosidase activity through a nano fluorescent sensor of F-PDA-CoOOH.
    Zhang H; Wang Z; Yang X; Li ZL; Sun L; Ma J; Jiang H
    Anal Chim Acta; 2019 Nov; 1080():170-177. PubMed ID: 31409467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introducing Ratiometric Fluorescence to MnO
    Fan D; Shang C; Gu W; Wang E; Dong S
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25870-25877. PubMed ID: 28696093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Turn-on" fluorometric probe for α-glucosidase activity using red fluorescent carbon dots and 3,3',5,5'-tetramethylbenzidine.
    Liu J; Wu F; Liu C; Bao H; Fu T
    Mikrochim Acta; 2020 Aug; 187(9):498. PubMed ID: 32803321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox induced dual-signal optical sensor of carbon dots/MnO
    Tang Q; Fan YZ; Han L; Yang YZ; Li NB; Luo HQ
    Mikrochim Acta; 2020 Jul; 187(8):475. PubMed ID: 32737591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel ratiometric fluorescent sensing method based on MnO
    Zuo Q; Chen Y; Chen ZP; Yu RQ
    Talanta; 2020 Mar; 209():120528. PubMed ID: 31892000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of inner filter effect between persistent luminescent particles and 2, 3-diaminophenazine for ratiometric fluorescent assay of ascorbic acid and ascorbate oxidase activity.
    Yao C; Zhang G; Guan Y; Yang T; Hu R; Yang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121564. PubMed ID: 35797885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WS
    Yan F; Sun Z; Xu J; Li H; Zhang Y
    Mikrochim Acta; 2020 May; 187(6):344. PubMed ID: 32447460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.