These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31307718)

  • 1. UV-FIA: UV-induced fluoro-immunochemical assay for ultra-trace detection of PETN, RDX, and TNT.
    Chaudhary S; Sonkusre P; Chopra A; Bhasin KK; Suri CR
    Anal Chim Acta; 2019 Oct; 1077():266-272. PubMed ID: 31307718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor.
    Wang C; Huang H; Bunes BR; Wu N; Xu M; Yang X; Yu L; Zang L
    Sci Rep; 2016 May; 6():25015. PubMed ID: 27146290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trace detection of some nitro-explosives using thermal mediated immunochemical defragmented method.
    Chaudhary S; Sonkusre P; Bhasin KK; Sabherwal P; Suri CR
    Biosens Bioelectron; 2019 Feb; 126():590-595. PubMed ID: 30500774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.
    Hikal WM; Weeks BL
    Talanta; 2014 Jul; 125():24-8. PubMed ID: 24840410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples.
    Babaee S; Beiraghi A
    Anal Chim Acta; 2010 Mar; 662(1):9-13. PubMed ID: 20152259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor.
    Paul M; Tscheuschner G; Herrmann S; Weller MG
    Biosensors (Basel); 2020 Aug; 10(8):. PubMed ID: 32764236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry.
    Zhang Y; Ma X; Zhang S; Yang C; Ouyang Z; Zhang X
    Analyst; 2009 Jan; 134(1):176-81. PubMed ID: 19082190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trace Explosives Vapor Generation and Quantitation at Parts per Quadrillion Concentrations.
    Giordano BC; Field CR; Andrews B; Lubrano A; Woytowitz M; Rogers D; Collins GE
    Anal Chem; 2016 Apr; 88(7):3747-53. PubMed ID: 26971624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous detection and quantification of explosives by a modified hollow cathode discharge ion source.
    Habib A; Bi L; Wen L
    Talanta; 2021 Oct; 233():122596. PubMed ID: 34215084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous identification and quantification of nitro-containing explosives by advanced chemometric data treatment of cyclic voltammetry at screen-printed electrodes.
    Cetó X; O' Mahony AM; Wang J; Del Valle M
    Talanta; 2013 Mar; 107():270-6. PubMed ID: 23598222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of explosives by positive corona discharge ion mobility spectrometry.
    Tabrizchi M; Ilbeigi V
    J Hazard Mater; 2010 Apr; 176(1-3):692-6. PubMed ID: 20004055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.
    Sekhar PK; Brosha EL; Mukundan R; Linker KL; Brusseau C; Garzon FH
    J Hazard Mater; 2011 Jun; 190(1-3):125-32. PubMed ID: 21435779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe.
    Oztekin EK; Burton DJ; Hahn DW
    Appl Spectrosc; 2016 Apr; 70(4):676-87. PubMed ID: 26865581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.
    Lee J; Park S; Cho SG; Goh EM; Lee S; Koh SS; Kim J
    Talanta; 2014 Mar; 120():64-70. PubMed ID: 24468343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tandem Ion Mobility Spectrometry for the Detection of Traces of Explosives in Cargo at Concentrations of Parts Per Quadrillion.
    Amo-González M; Pérez S; Delgado R; Arranz G; Carnicero I
    Anal Chem; 2019 Nov; 91(21):14009-14018. PubMed ID: 31556599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace detection of explosives using a membrane-based displacement immunoassay.
    Rabbany SY; Lane WJ; Marganski WA; Kusterbeck AW; Ligler FS
    J Immunol Methods; 2000 Dec; 246(1-2):69-77. PubMed ID: 11121548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of highly sensitive and selective antibodies for the detection of the explosive pentaerythritol tetranitrate (PETN) by bioisosteric replacement.
    Hesse A; Biyikal M; Rurack K; Weller MG
    J Mol Recognit; 2016 Feb; 29(2):88-94. PubMed ID: 26463875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of explosives in vapor phase by field asymmetric ion mobility spectrometry with dopant-assisted laser ionization.
    Kostarev VA; Kotkovskii GE; Chistyakov AA; Akmalov AE
    Talanta; 2022 Aug; 245():123414. PubMed ID: 35487080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy.
    Comanescu G; Manka CK; Grun J; Nikitin S; Zabetakis D
    Appl Spectrosc; 2008 Aug; 62(8):833-9. PubMed ID: 18702854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.
    Ong TH; Mendum T; Geurtsen G; Kelley J; Ostrinskaya A; Kunz R
    Anal Chem; 2017 Jun; 89(12):6482-6490. PubMed ID: 28598144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.