BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31307718)

  • 1. UV-FIA: UV-induced fluoro-immunochemical assay for ultra-trace detection of PETN, RDX, and TNT.
    Chaudhary S; Sonkusre P; Chopra A; Bhasin KK; Suri CR
    Anal Chim Acta; 2019 Oct; 1077():266-272. PubMed ID: 31307718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor.
    Wang C; Huang H; Bunes BR; Wu N; Xu M; Yang X; Yu L; Zang L
    Sci Rep; 2016 May; 6():25015. PubMed ID: 27146290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trace detection of some nitro-explosives using thermal mediated immunochemical defragmented method.
    Chaudhary S; Sonkusre P; Bhasin KK; Sabherwal P; Suri CR
    Biosens Bioelectron; 2019 Feb; 126():590-595. PubMed ID: 30500774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.
    Hikal WM; Weeks BL
    Talanta; 2014 Jul; 125():24-8. PubMed ID: 24840410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples.
    Babaee S; Beiraghi A
    Anal Chim Acta; 2010 Mar; 662(1):9-13. PubMed ID: 20152259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor.
    Paul M; Tscheuschner G; Herrmann S; Weller MG
    Biosensors (Basel); 2020 Aug; 10(8):. PubMed ID: 32764236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry.
    Zhang Y; Ma X; Zhang S; Yang C; Ouyang Z; Zhang X
    Analyst; 2009 Jan; 134(1):176-81. PubMed ID: 19082190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trace Explosives Vapor Generation and Quantitation at Parts per Quadrillion Concentrations.
    Giordano BC; Field CR; Andrews B; Lubrano A; Woytowitz M; Rogers D; Collins GE
    Anal Chem; 2016 Apr; 88(7):3747-53. PubMed ID: 26971624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous detection and quantification of explosives by a modified hollow cathode discharge ion source.
    Habib A; Bi L; Wen L
    Talanta; 2021 Oct; 233():122596. PubMed ID: 34215084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous identification and quantification of nitro-containing explosives by advanced chemometric data treatment of cyclic voltammetry at screen-printed electrodes.
    Cetó X; O' Mahony AM; Wang J; Del Valle M
    Talanta; 2013 Mar; 107():270-6. PubMed ID: 23598222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of explosives by positive corona discharge ion mobility spectrometry.
    Tabrizchi M; Ilbeigi V
    J Hazard Mater; 2010 Apr; 176(1-3):692-6. PubMed ID: 20004055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace detection and discrimination of explosives using electrochemical potentiometric gas sensors.
    Sekhar PK; Brosha EL; Mukundan R; Linker KL; Brusseau C; Garzon FH
    J Hazard Mater; 2011 Jun; 190(1-3):125-32. PubMed ID: 21435779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe.
    Oztekin EK; Burton DJ; Hahn DW
    Appl Spectrosc; 2016 Apr; 70(4):676-87. PubMed ID: 26865581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.
    Lee J; Park S; Cho SG; Goh EM; Lee S; Koh SS; Kim J
    Talanta; 2014 Mar; 120():64-70. PubMed ID: 24468343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tandem Ion Mobility Spectrometry for the Detection of Traces of Explosives in Cargo at Concentrations of Parts Per Quadrillion.
    Amo-González M; Pérez S; Delgado R; Arranz G; Carnicero I
    Anal Chem; 2019 Nov; 91(21):14009-14018. PubMed ID: 31556599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace detection of explosives using a membrane-based displacement immunoassay.
    Rabbany SY; Lane WJ; Marganski WA; Kusterbeck AW; Ligler FS
    J Immunol Methods; 2000 Dec; 246(1-2):69-77. PubMed ID: 11121548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of highly sensitive and selective antibodies for the detection of the explosive pentaerythritol tetranitrate (PETN) by bioisosteric replacement.
    Hesse A; Biyikal M; Rurack K; Weller MG
    J Mol Recognit; 2016 Feb; 29(2):88-94. PubMed ID: 26463875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of explosives in vapor phase by field asymmetric ion mobility spectrometry with dopant-assisted laser ionization.
    Kostarev VA; Kotkovskii GE; Chistyakov AA; Akmalov AE
    Talanta; 2022 Aug; 245():123414. PubMed ID: 35487080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy.
    Comanescu G; Manka CK; Grun J; Nikitin S; Zabetakis D
    Appl Spectrosc; 2008 Aug; 62(8):833-9. PubMed ID: 18702854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.
    Ong TH; Mendum T; Geurtsen G; Kelley J; Ostrinskaya A; Kunz R
    Anal Chem; 2017 Jun; 89(12):6482-6490. PubMed ID: 28598144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.