These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31307769)
1. On-field player workload exposure and knee injury risk monitoring via deep learning. Johnson WR; Mian A; Lloyd DG; Alderson JA J Biomech; 2019 Aug; 93():185-193. PubMed ID: 31307769 [TBL] [Abstract][Full Text] [Related]
2. Predicting Athlete Ground Reaction Forces and Moments From Spatio-Temporal Driven CNN Models. Johnson WR; Alderson J; Lloyd D; Mian A IEEE Trans Biomed Eng; 2019 Mar; 66(3):689-694. PubMed ID: 29993515 [TBL] [Abstract][Full Text] [Related]
3. Multidimensional Ground Reaction Forces and Moments From Wearable Sensor Accelerations via Deep Learning. Johnson WR; Mian A; Robinson MA; Verheul J; Lloyd DG; Alderson JA IEEE Trans Biomed Eng; 2021 Jan; 68(1):289-297. PubMed ID: 32746046 [TBL] [Abstract][Full Text] [Related]
4. Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Zazulak BT; Hewett TE; Reeves NP; Goldberg B; Cholewicki J Am J Sports Med; 2007 Jul; 35(7):1123-30. PubMed ID: 17468378 [TBL] [Abstract][Full Text] [Related]
5. A wearable system to assess risk for anterior cruciate ligament injury during jump landing: measurements of temporal events, jump height, and sagittal plane kinematics. Dowling AV; Favre J; Andriacchi TP J Biomech Eng; 2011 Jul; 133(7):071008. PubMed ID: 21823747 [TBL] [Abstract][Full Text] [Related]
6. Sports-related knee injuries in female athletes: what gives? Dugan SA Am J Phys Med Rehabil; 2005 Feb; 84(2):122-30. PubMed ID: 15668560 [TBL] [Abstract][Full Text] [Related]
7. 3D Human Knee Flexion Angle Estimation Using Deep Convolutional Neural Networks. Chalangari P; Fevens T; Rivaz H Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5424-5427. PubMed ID: 33019207 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Hewett TE; Myer GD; Ford KR; Heidt RS; Colosimo AJ; McLean SG; van den Bogert AJ; Paterno MV; Succop P Am J Sports Med; 2005 Apr; 33(4):492-501. PubMed ID: 15722287 [TBL] [Abstract][Full Text] [Related]
9. Anterior cruciate ligament injury in the athlete--an update in prevention strategies. Peterson JR; Peterson ED S D Med; 2012 Nov; 65(11):421, 423, 425 passim. PubMed ID: 23189409 [TBL] [Abstract][Full Text] [Related]
10. Effects of knee injury primary prevention programs on anterior cruciate ligament injury rates in female athletes in different sports: a systematic review. Michaelidis M; Koumantakis GA Phys Ther Sport; 2014 Aug; 15(3):200-10. PubMed ID: 24703497 [TBL] [Abstract][Full Text] [Related]
11. Sex Differences in the Incidence of Anterior Cruciate Ligament, Medial Collateral Ligament, and Meniscal Injuries in Collegiate and High School Sports: 2009-2010 Through 2013-2014. Stanley LE; Kerr ZY; Dompier TP; Padua DA Am J Sports Med; 2016 Jun; 44(6):1565-72. PubMed ID: 26940226 [TBL] [Abstract][Full Text] [Related]
12. Effectiveness of Neuromuscular Training Based on the Neuromuscular Risk Profile. Hewett TE; Ford KR; Xu YY; Khoury J; Myer GD Am J Sports Med; 2017 Jul; 45(9):2142-2147. PubMed ID: 28441059 [TBL] [Abstract][Full Text] [Related]
13. Age Influences Biomechanical Changes After Participation in an Anterior Cruciate Ligament Injury Prevention Program. Thompson-Kolesar JA; Gatewood CT; Tran AA; Silder A; Shultz R; Delp SL; Dragoo JL Am J Sports Med; 2018 Mar; 46(3):598-606. PubMed ID: 29281799 [TBL] [Abstract][Full Text] [Related]
14. Reducing the risk of noncontact anterior cruciate ligament injuries in the female athlete. Barber-Westin SD; Noyes FR; Smith ST; Campbell TM Phys Sportsmed; 2009 Oct; 37(3):49-61. PubMed ID: 20048528 [TBL] [Abstract][Full Text] [Related]
15. Balance index score as a predictive factor for lower sports results or anterior cruciate ligament knee injuries in Croatian female athletes--preliminary study. Vrbanić TS; Ravlić-Gulan J; Gulan G; Matovinović D Coll Antropol; 2007 Mar; 31(1):253-8. PubMed ID: 17598410 [TBL] [Abstract][Full Text] [Related]
16. Report of the Clinical and Functional Primary Outcomes in Men of the ACL-SPORTS Trial: Similar Outcomes in Men Receiving Secondary Prevention With and Without Perturbation Training 1 and 2 Years After ACL Reconstruction. Arundale AJH; Cummer K; Capin JJ; Zarzycki R; Snyder-Mackler L Clin Orthop Relat Res; 2017 Oct; 475(10):2523-2534. PubMed ID: 28224443 [TBL] [Abstract][Full Text] [Related]
17. Anterior cruciate ligament injuries in the female athlete. Toth AP; Cordasco FA J Gend Specif Med; 2001; 4(4):25-34. PubMed ID: 11727468 [TBL] [Abstract][Full Text] [Related]
18. Report of the Primary Outcomes for Gait Mechanics in Men of the ACL-SPORTS Trial: Secondary Prevention With and Without Perturbation Training Does Not Restore Gait Symmetry in Men 1 or 2 Years After ACL Reconstruction. Capin JJ; Zarzycki R; Arundale A; Cummer K; Snyder-Mackler L Clin Orthop Relat Res; 2017 Oct; 475(10):2513-2522. PubMed ID: 28224442 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical and neuromuscular characteristics of male athletes: implications for the development of anterior cruciate ligament injury prevention programs. Sugimoto D; Alentorn-Geli E; Mendiguchía J; Samuelsson K; Karlsson J; Myer GD Sports Med; 2015 Jun; 45(6):809-22. PubMed ID: 25663251 [TBL] [Abstract][Full Text] [Related]
20. Shoe-surface friction influences movement strategies during a sidestep cutting task: implications for anterior cruciate ligament injury risk. Dowling AV; Corazza S; Chaudhari AM; Andriacchi TP Am J Sports Med; 2010 Mar; 38(3):478-85. PubMed ID: 20194954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]