These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31308410)

  • 21. How boundary slip controls emergent Darcy flow of liquids in tortuous and in capillary pores.
    Singh K
    Phys Rev E; 2020 Jul; 102(1-1):013101. PubMed ID: 32794951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows.
    Kim SH; Pitsch H; Boyd ID
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026704. PubMed ID: 18352145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of Micro/Nanopores and Their Petroleum Significance in the Eastern Segment of the Altun Piedmont, Qaidam Basin, Western China.
    Xie QB; Li X; Li CL; Zhang YS
    J Nanosci Nanotechnol; 2021 Jan; 21(1):181-194. PubMed ID: 33213622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wall Slip Behaviour of Polymers Based on Molecular Dynamics at the Micro/Nanoscale and Its Effect on Interface Thermal Resistance.
    Lou Y; Wu G; Feng Y
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32987770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation.
    Balme S; Picaud F; Manghi M; Palmeri J; Bechelany M; Cabello-Aguilar S; Abou-Chaaya A; Miele P; Balanzat E; Janot JM
    Sci Rep; 2015 Jun; 5():10135. PubMed ID: 26036687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium.
    Hibi Y; Kashihara A
    J Contam Hydrol; 2018 Mar; 210():65-80. PubMed ID: 29519732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonlocal Effects and Slip Heat Flow in Nanolayers.
    Zhu CY; You W; Li ZY
    Sci Rep; 2017 Aug; 7(1):9568. PubMed ID: 28852141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on the Influence of Shale Storage Space Types on Shale Gas Transport.
    Gao Q; Dong P; Liu C
    ACS Omega; 2021 May; 6(20):12931-12951. PubMed ID: 34056445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reassessing fast water transport through carbon nanotubes.
    Thomas JA; McGaughey AJ
    Nano Lett; 2008 Sep; 8(9):2788-93. PubMed ID: 18665654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.
    Guo C; Wei M; Liu H
    PLoS One; 2015; 10(12):e0143649. PubMed ID: 26657698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scale Effect on Simple Liquid Transport through a Nanoporous Graphene Membrane.
    Hossain JA; Kim B
    Langmuir; 2021 Jun; 37(21):6498-6509. PubMed ID: 34018744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model.
    Zhao J; Yao J; Zhang M; Zhang L; Yang Y; Sun H; An S; Li A
    Sci Rep; 2016 Sep; 6():32393. PubMed ID: 27587293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity.
    Chen L; Zhang L; Kang Q; Viswanathan HS; Yao J; Tao W
    Sci Rep; 2015 Jan; 5():8089. PubMed ID: 25627247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lattice Boltzmann simulation of rarefied gas flows in microchannels.
    Zhang Y; Qin R; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):047702. PubMed ID: 15903829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-scale polymeric carbon nanotube membranes with sub-1.27-nm pores.
    McGinnis RL; Reimund K; Ren J; Xia L; Chowdhury MR; Sun X; Abril M; Moon JD; Merrick MM; Park J; Stevens KA; McCutcheon JR; Freeman BD
    Sci Adv; 2018 Mar; 4(3):e1700938. PubMed ID: 29536038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lattice Boltzmann simulation of shale gas transport in organic nano-pores.
    Zhang X; Xiao L; Shan X; Guo L
    Sci Rep; 2014 May; 4():4843. PubMed ID: 24784022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Filter-matrix lattice Boltzmann model for microchannel gas flows.
    Zhuo C; Zhong C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053311. PubMed ID: 24329383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.