These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
520 related articles for article (PubMed ID: 31308440)
1. Establishing next-generation pest control services in rice fields: eco-agriculture. Ali MP; Bari MN; Haque SS; Kabir MMM; Afrin S; Nowrin F; Islam MS; Landis DA Sci Rep; 2019 Jul; 9(1):10180. PubMed ID: 31308440 [TBL] [Abstract][Full Text] [Related]
2. Diversified Bund Vegetation Coupled With Flowering Plants Enhances Predator Population and Early-Season Pest Control. Qian P; Bai Y; Zhou W; Yu H; Zhu Z; Wang G; Quais MK; Li F; Chen Y; Tan Y; Shi X; Wang X; Zhong X; Zhu ZR Environ Entomol; 2021 Aug; 50(4):842-851. PubMed ID: 33851702 [TBL] [Abstract][Full Text] [Related]
3. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Gardiner MM; Landis DA; Gratton C; DiFonzo CD; O'Neal M; Chacon JM; Wayo MT; Schmidt NP; Mueller EE; Heimpel GE Ecol Appl; 2009 Jan; 19(1):143-54. PubMed ID: 19323179 [TBL] [Abstract][Full Text] [Related]
4. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Gurr GM; Lu Z; Zheng X; Xu H; Zhu P; Chen G; Yao X; Cheng J; Zhu Z; Catindig JL; Villareal S; Van Chien H; Cuong le Q; Channoo C; Chengwattana N; Lan LP; Hai le H; Chaiwong J; Nicol HI; Perovic DJ; Wratten SD; Heong KL Nat Plants; 2016 Feb; 2():16014. PubMed ID: 27249349 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: prospects for enhanced use in agriculture. Lu ZX; Zhu PY; Gurr GM; Zheng XS; Read DM; Heong KL; Yang YJ; Xu HX Insect Sci; 2014 Feb; 21(1):1-12. PubMed ID: 23955976 [TBL] [Abstract][Full Text] [Related]
6. Complementarity among natural enemies enhances pest suppression. Dainese M; Schneider G; Krauss J; Steffan-Dewenter I Sci Rep; 2017 Aug; 7(1):8172. PubMed ID: 28811504 [TBL] [Abstract][Full Text] [Related]
7. Ecological engineering in low land rice for brown plant hopper, Yele Y; Chander S; Suroshe SS; Nebapure S; Tenguri P; Pattathanam Sundaran A PeerJ; 2023; 11():e15531. PubMed ID: 37786579 [TBL] [Abstract][Full Text] [Related]
8. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control. Lopes T; Hatt S; Xu Q; Chen J; Liu Y; Francis F Pest Manag Sci; 2016 Dec; 72(12):2193-2202. PubMed ID: 27271821 [TBL] [Abstract][Full Text] [Related]
9. Multi-scale approach to biodiversity proxies of biological control service in European farmlands. Tougeron K; Couthouis E; Marrec R; Barascou L; Baudry J; Boussard H; Burel F; Couty A; Doury G; Francis C; Hecq F; Le Roux V; Pétillon J; Spicher F; Hance T; van Baaren J Sci Total Environ; 2022 May; 822():153569. PubMed ID: 35114245 [TBL] [Abstract][Full Text] [Related]
10. Habitat Management to Suppress Pest Populations: Progress and Prospects. Gurr GM; Wratten SD; Landis DA; You M Annu Rev Entomol; 2017 Jan; 62():91-109. PubMed ID: 27813664 [TBL] [Abstract][Full Text] [Related]
11. Species traits elucidate crop pest response to landscape composition: a global analysis. Tamburini G; Santoiemma G; E O'Rourke M; Bommarco R; Chaplin-Kramer R; Dainese M; Karp DS; Kim TN; Martin EA; Petersen M; Marini L Proc Biol Sci; 2020 Oct; 287(1937):20202116. PubMed ID: 33109015 [TBL] [Abstract][Full Text] [Related]
12. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
13. Reducing insecticide use in broad-acre grains production: an Australian study. Macfadyen S; Hardie DC; Fagan L; Stefanova K; Perry KD; DeGraaf HE; Holloway J; Spafford H; Umina PA PLoS One; 2014; 9(2):e89119. PubMed ID: 24586535 [TBL] [Abstract][Full Text] [Related]
14. Biological control interventions reduce pest abundance and crop damage while maintaining natural enemies in sub-Saharan Africa: a meta-analysis. Ratto F; Bruce T; Chipabika G; Mwamakamba S; Mkandawire R; Khan Z; Mkindi A; Pittchar J; Sallu SM; Whitfield S; Wilson K; Sait SM Proc Biol Sci; 2022 Dec; 289(1988):20221695. PubMed ID: 36475436 [TBL] [Abstract][Full Text] [Related]
15. LANDSCAPE CHANGES IN A LOWLAND IN BENIN: ECOLOGICAL IMPACT ON PESTS AND NATURAL ENEMIES. Boucher A; Silvie P; Menozzi P; Adda C; Auzoux S; Jean J; Huat J Commun Agric Appl Biol Sci; 2015; 80(2):79-89. PubMed ID: 27145573 [TBL] [Abstract][Full Text] [Related]
16. Effects of Bacillus thuringiensis on non-target herbivore and natural enemy assemblages in tropical irrigated rice. Schoenly KG; Cohen MB; Barrion AT; Zhang W; Gaolach B; Viajante VD Environ Biosafety Res; 2003; 2(3):181-206. PubMed ID: 15612416 [TBL] [Abstract][Full Text] [Related]
17. Natural enemy interactions constrain pest control in complex agricultural landscapes. Martin EA; Reineking B; Seo B; Steffan-Dewenter I Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5534-9. PubMed ID: 23513216 [TBL] [Abstract][Full Text] [Related]
18. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture. Wan NF; Cai YM; Shen YJ; Ji XY; Wu XW; Zheng XR; Cheng W; Li J; Jiang YP; Chen X; Weiner J; Jiang JX; Nie M; Ju RT; Yuan T; Tang JJ; Tian WD; Zhang H; Li B Elife; 2018 May; 7():. PubMed ID: 29792597 [TBL] [Abstract][Full Text] [Related]
19. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon. Singh A; Weisser WW; Hanna R; Houmgny R; Zytynska SE Pest Manag Sci; 2017 Oct; 73(10):2017-2027. PubMed ID: 28585376 [TBL] [Abstract][Full Text] [Related]
20. IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Pecenka JR; Ingwell LL; Foster RE; Krupke CH; Kaplan I Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34697238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]