These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 31308537)
1. Author Correction: Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Alexeev EM; Ruiz-Tijerina DA; Danovich M; Hamer MJ; Terry DJ; Nayak PK; Ahn S; Pak S; Lee J; Sohn JI; Molas MR; Koperski M; Watanabe K; Taniguchi T; Novoselov KS; Gorbachev RV; Shin HS; Fal'ko VI; Tartakovskii AI Nature; 2019 Aug; 572(7768):E8. PubMed ID: 31308537 [TBL] [Abstract][Full Text] [Related]
2. Shedding light on moiré excitons: A first-principles perspective. Guo H; Zhang X; Lu G Sci Adv; 2020 Oct; 6(42):. PubMed ID: 33067234 [TBL] [Abstract][Full Text] [Related]
3. Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Liu Y; Zeng C; Yu J; Zhong J; Li B; Zhang Z; Liu Z; Wang ZM; Pan A; Duan X Chem Soc Rev; 2021 Jun; 50(11):6401-6422. PubMed ID: 33942837 [TBL] [Abstract][Full Text] [Related]
4. Author Correction: Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Bai Y; Zhou L; Wang J; Wu W; McGilly LJ; Halbertal D; Lo CFB; Liu F; Ardelean J; Rivera P; Finney NR; Yang XC; Basov DN; Yao W; Xu X; Hone J; Pasupathy AN; Zhu XY Nat Mater; 2020 Oct; 19(10):1124. PubMed ID: 32690914 [TBL] [Abstract][Full Text] [Related]
5. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Cao Y; Fatemi V; Demir A; Fang S; Tomarken SL; Luo JY; Sanchez-Yamagishi JD; Watanabe K; Taniguchi T; Kaxiras E; Ashoori RC; Jarillo-Herrero P Nature; 2018 Apr; 556(7699):80-84. PubMed ID: 29512654 [TBL] [Abstract][Full Text] [Related]
6. Ultrafast Energy Transfer of Both Bright and Dark Excitons in 2D van der Waals Heterostructures Beyond Dipolar Coupling. Wu L; Chen Y; Zhou H; Zhu H ACS Nano; 2019 Feb; 13(2):2341-2348. PubMed ID: 30715845 [TBL] [Abstract][Full Text] [Related]
7. Moiré pattern as a magnifying glass for strain and dislocations in van der Waals heterostructures. Cosma DA; Wallbank JR; Cheianov V; Fal'ko VI Faraday Discuss; 2014; 173():137-43. PubMed ID: 25465904 [TBL] [Abstract][Full Text] [Related]
8. Moiré Phonons in Twisted Bilayer MoS Lin ML; Tan QH; Wu JB; Chen XS; Wang JH; Pan YH; Zhang X; Cong X; Zhang J; Ji W; Hu PA; Liu KH; Tan PH ACS Nano; 2018 Aug; 12(8):8770-8780. PubMed ID: 30086224 [TBL] [Abstract][Full Text] [Related]
11. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. You B; Wang X; Zheng Z; Mi W Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350 [TBL] [Abstract][Full Text] [Related]
12. Ultrafast dynamics in van der Waals heterostructures. Jin C; Ma EY; Karni O; Regan EC; Wang F; Heinz TF Nat Nanotechnol; 2018 Nov; 13(11):994-1003. PubMed ID: 30397296 [TBL] [Abstract][Full Text] [Related]
13. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Yankowitz M; Jung J; Laksono E; Leconte N; Chittari BL; Watanabe K; Taniguchi T; Adam S; Graf D; Dean CR Nature; 2018 May; 557(7705):404-408. PubMed ID: 29769674 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary design of interfacial phase change van der Waals heterostructures. Kalikka J; Zhou X; Behera J; Nannicini G; Simpson RE Nanoscale; 2016 Oct; 8(42):18212-18220. PubMed ID: 27759127 [TBL] [Abstract][Full Text] [Related]
15. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures. Wang H; Bang J; Sun Y; Liang L; West D; Meunier V; Zhang S Nat Commun; 2016 May; 7():11504. PubMed ID: 27160484 [TBL] [Abstract][Full Text] [Related]
16. Moiré photonics and optoelectronics. Du L; Molas MR; Huang Z; Zhang G; Wang F; Sun Z Science; 2023 Mar; 379(6639):eadg0014. PubMed ID: 36996214 [TBL] [Abstract][Full Text] [Related]
17. Indirect excitons in van der Waals heterostructures at room temperature. Calman EV; Fogler MM; Butov LV; Hu S; Mishchenko A; Geim AK Nat Commun; 2018 May; 9(1):1895. PubMed ID: 29760404 [TBL] [Abstract][Full Text] [Related]
18. Graphene-based heterostructures with moiré superlattice that preserve the Dirac cone: a first-principles study. Kong X; Li L; Peeters FM J Phys Condens Matter; 2019 Jun; 31(25):255302. PubMed ID: 30909168 [TBL] [Abstract][Full Text] [Related]
19. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. Ceballos F; Bellus MZ; Chiu HY; Zhao H ACS Nano; 2014 Dec; 8(12):12717-24. PubMed ID: 25402669 [TBL] [Abstract][Full Text] [Related]
20. Correction to Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe Nayak PK; Horbatenko Y; Ahn S; Kim G; Lee JU; Ma KY; Jang AR; Lim H; Kim D; Ryu S; Cheong H; Park N; Shin HS ACS Nano; 2017 Sep; 11(9):9566. PubMed ID: 28846387 [No Abstract] [Full Text] [Related] [Next] [New Search]