These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31308554)

  • 41. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Guide RNA engineering for versatile Cas9 functionality.
    Nowak CM; Lawson S; Zerez M; Bleris L
    Nucleic Acids Res; 2016 Nov; 44(20):9555-9564. PubMed ID: 27733506
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Position-dependent sequence motif preferences of SpCas9 are largely determined by scaffold-complementary spacer motifs.
    Huszár K; Welker Z; Györgypál Z; Tóth E; Ligeti Z; Kulcsár PI; Dancsó J; Tálas A; Krausz SL; Varga É; Welker E
    Nucleic Acids Res; 2023 Jun; 51(11):5847-5863. PubMed ID: 37140059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity.
    Eslami-Mossallam B; Klein M; Smagt CVD; Sanden KVD; Jones SK; Hawkins JA; Finkelstein IJ; Depken M
    Nat Commun; 2022 Mar; 13(1):1367. PubMed ID: 35292641
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants.
    Li J; Xu R; Qin R; Liu X; Kong F; Wei P
    Mol Plant; 2021 Feb; 14(2):352-360. PubMed ID: 33383203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.
    Hirano S; Nishimasu H; Ishitani R; Nureki O
    Mol Cell; 2016 Mar; 61(6):886-94. PubMed ID: 26990991
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM.
    Liu Y; Liang F; Dong Z; Li S; Ye J; Qin W
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440868
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An optimized SpCas9 high-fidelity variant for direct protein delivery.
    Pedrazzoli E; Bianchi A; Umbach A; Amistadi S; Brusson M; Frati G; Ciciani M; Badowska KA; Arosio D; Miccio A; Cereseto A; Casini A
    Mol Ther; 2023 Jul; 31(7):2257-2265. PubMed ID: 36905119
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid.
    Niu Q; Wu S; Li Y; Yang X; Liu P; Xu Y; Lang Z
    J Integr Plant Biol; 2020 Apr; 62(4):398-402. PubMed ID: 31702097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expanding the scope of genome editing with SpG and SpRY variants in rice.
    Ren J; Meng X; Hu F; Liu Q; Cao Y; Li H; Yan C; Li J; Wang K; Yu H; Wang C
    Sci China Life Sci; 2021 Oct; 64(10):1784-1787. PubMed ID: 33443621
    [No Abstract]   [Full Text] [Related]  

  • 51. PpCas9 from Pasteurella pneumotropica - a compact Type II-C Cas9 ortholog active in human cells.
    Fedorova I; Vasileva A; Selkova P; Abramova M; Arseniev A; Pobegalov G; Kazalov M; Musharova O; Goryanin I; Artamonova D; Zyubko T; Shmakov S; Artamonova T; Khodorkovskii M; Severinov K
    Nucleic Acids Res; 2020 Dec; 48(21):12297-12309. PubMed ID: 33152077
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electroporation-Based CRISPR/Cas9 Gene Editing Using Cas9 Protein and Chemically Modified sgRNAs.
    Laustsen A; Bak RO
    Methods Mol Biol; 2019; 1961():127-134. PubMed ID: 30912044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-Throughput Protein Engineering by Massively Parallel Combinatorial Mutagenesis.
    Wan YK; Choi GCG; Wong ASL
    Methods Mol Biol; 2021; 2199():3-12. PubMed ID: 33125641
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent Advances in Improving Gene-Editing Specificity through CRISPR-Cas9 Nuclease Engineering.
    Huang X; Yang D; Zhang J; Xu J; Chen YE
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883629
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increasing the specificity of CRISPR systems with engineered RNA secondary structures.
    Kocak DD; Josephs EA; Bhandarkar V; Adkar SS; Kwon JB; Gersbach CA
    Nat Biotechnol; 2019 Jun; 37(6):657-666. PubMed ID: 30988504
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Simple Heat Treatment Increases SpCas9-Mediated Mutation Efficiency in Arabidopsis.
    Kurokawa S; Rahman H; Yamanaka N; Ishizaki C; Islam S; Aiso T; Hirata S; Yamamoto M; Kobayashi K; Kaya H
    Plant Cell Physiol; 2021 Dec; 62(11):1676-1686. PubMed ID: 34347875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Efficient Expression and Purification Protocol for SpCas9 Nuclease and Evaluation of Different Delivery Methods of Ribonucleoprotein.
    Evmenov K; Pustogarov N; Panteleev D; Safin A; Alkalaeva E
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338898
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulating Cas9 activity for precision gene editing.
    Uslu M; Siyah P; Harvey AJ; Kocabaş F
    Prog Mol Biol Transl Sci; 2021; 181():89-127. PubMed ID: 34127203
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Docking sites inside Cas9 for adenine base editing diversification and RNA off-target elimination.
    Li S; Yuan B; Cao J; Chen J; Chen J; Qiu J; Zhao XM; Wang X; Qiu Z; Cheng TL
    Nat Commun; 2020 Nov; 11(1):5827. PubMed ID: 33203850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.