These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31308554)

  • 61. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice.
    Xu W; Song W; Yang Y; Wu Y; Lv X; Yuan S; Liu Y; Yang J
    BMC Plant Biol; 2019 Nov; 19(1):511. PubMed ID: 31752697
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genome Editing in Potato with CRISPR/Cas9.
    Nadakuduti SS; Starker CG; Voytas DF; Buell CR; Douches DS
    Methods Mol Biol; 2019; 1917():183-201. PubMed ID: 30610637
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Design and Assembly of CRISPR/Cas9 Lentiviral and rAAV Vectors for Targeted Genome Editing.
    Sandoval IM; Collier TJ; Manfredsson FP
    Methods Mol Biol; 2019; 1937():29-45. PubMed ID: 30706388
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sequential Activation of Guide RNAs to Enable Successive CRISPR-Cas9 Activities.
    Clarke R; Terry AR; Pennington H; Hasty C; MacDougall MS; Regan M; Merrill BJ
    Mol Cell; 2021 Jan; 81(2):226-238.e5. PubMed ID: 33378644
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
    Mekler V; Kuznedelov K; Severinov K
    J Biol Chem; 2020 May; 295(19):6509-6517. PubMed ID: 32241913
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor.
    Wang J; Teng Y; Zhang R; Wu Y; Lou L; Zou Y; Li M; Xie ZR; Yan Y
    Nat Commun; 2021 Nov; 12(1):6916. PubMed ID: 34824292
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genome editing by miniature CRISPR/Cas12f1 enzyme in Escherichia coli.
    Okano K; Sato Y; Hizume T; Honda K
    J Biosci Bioeng; 2021 Aug; 132(2):120-124. PubMed ID: 34023220
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the
    Zhang S; Zhang R; Gao J; Gu T; Song G; Li W; Li D; Li Y; Li G
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480315
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome.
    Müller M; Lee CM; Gasiunas G; Davis TH; Cradick TJ; Siksnys V; Bao G; Cathomen T; Mussolino C
    Mol Ther; 2016 Mar; 24(3):636-44. PubMed ID: 26658966
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
    Shin HR; Kweon J; Kim Y
    Methods Mol Biol; 2021; 2162():185-193. PubMed ID: 32926383
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Methods for Measuring CRISPR/Cas9 DNA Cleavage in Cells.
    Cromwell CR; Jovel J; Hubbard BP
    Methods Mol Biol; 2021; 2162():197-213. PubMed ID: 32926384
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Catalytically Enhanced Cas9 through Directed Protein Evolution.
    Hand TH; Roth MO; Smith CL; Shiel E; Klein KN; Gilbert DM; Li H
    CRISPR J; 2021 Apr; 4(2):223-232. PubMed ID: 33876948
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases.
    Kim D; Luk K; Wolfe SA; Kim JS
    Annu Rev Biochem; 2019 Jun; 88():191-220. PubMed ID: 30883196
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High-fidelity KKH variant of Staphylococcus aureus Cas9 nucleases with improved base mismatch discrimination.
    Yuen CTL; Thean DGL; Chan BKC; Zhou P; Kwok CCS; Chu HY; Cheung MSH; Wang B; Chan YM; Mak SYL; Leung AY; Choi GCG; Zheng Z; Wong ASL
    Nucleic Acids Res; 2022 Feb; 50(3):1650-1660. PubMed ID: 35051997
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence.
    Babu K; Kathiresan V; Kumari P; Newsom S; Parameshwaran HP; Chen X; Liu J; Qin PZ; Rajan R
    Biochemistry; 2021 Dec; 60(49):3783-3800. PubMed ID: 34757726
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In Vitro Assays for Comparing the Specificity of First- and Next-Generation CRISPR/Cas9 Systems.
    Cromwell CR; Hubbard BP
    Methods Mol Biol; 2021; 2162():215-232. PubMed ID: 32926385
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Points of View on the Tools for Genome/Gene Editing.
    Chuang CK; Lin WM
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576035
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Engineered CRISPR-Cas9 nuclease with expanded targeting space.
    Nishimasu H; Shi X; Ishiguro S; Gao L; Hirano S; Okazaki S; Noda T; Abudayyeh OO; Gootenberg JS; Mori H; Oura S; Holmes B; Tanaka M; Seki M; Hirano H; Aburatani H; Ishitani R; Ikawa M; Yachie N; Zhang F; Nureki O
    Science; 2018 Sep; 361(6408):1259-1262. PubMed ID: 30166441
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In Planta Processing of the SpCas9-gRNA Complex.
    Mikami M; Toki S; Endo M
    Plant Cell Physiol; 2017 Nov; 58(11):1857-1867. PubMed ID: 29040704
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    Acharya S; Mishra A; Paul D; Ansari AH; Azhar M; Kumar M; Rauthan R; Sharma N; Aich M; Sinha D; Sharma S; Jain S; Ray A; Jain S; Ramalingam S; Maiti S; Chakraborty D
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20959-20968. PubMed ID: 31570623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.