BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31308659)

  • 1. Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in
    Lee B; Lee MJ; Yun SJ; Kim K; Choi IH; Park S
    Int J Nanomedicine; 2019; 14():4801-4816. PubMed ID: 31308659
    [No Abstract]   [Full Text] [Related]  

  • 2. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (
    Radhakrishnan VS; Reddy Mudiam MK; Kumar M; Dwivedi SP; Singh SP; Prasad T
    Int J Nanomedicine; 2018; 13():2647-2663. PubMed ID: 29760548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro studies on oxidative stress-independent, Ag nanoparticles-induced cell toxicity of
    Radhakrishnan VS; Dwivedi SP; Siddiqui MH; Prasad T
    Int J Nanomedicine; 2018; 13(T-NANO 2014 Abstracts):91-96. PubMed ID: 29593404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoparticles offer a synergistic effect with fluconazole against fluconazole-resistant Candida albicans by abrogating drug efflux pumps and increasing endogenous ROS.
    Jia D; Sun W
    Infect Genet Evol; 2021 Sep; 93():104937. PubMed ID: 34029724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acinetobacter sp. mediated synthesis of AgNPs, its optimization, characterization and synergistic antifungal activity against C. albicans.
    Nadhe SB; Singh R; Wadhwani SA; Chopade BA
    J Appl Microbiol; 2019 Aug; 127(2):445-458. PubMed ID: 31074075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans.
    Yu Q; Zhang B; Li J; Zhang B; Wang H; Li M
    Free Radic Biol Med; 2016 Oct; 99():572-583. PubMed ID: 27650297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis.
    Käosaar S; Kahru A; Mantecca P; Kasemets K
    Toxicol In Vitro; 2016 Sep; 35():149-62. PubMed ID: 27260961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Look on Antifungal Activity of Silver Nanoparticles (AgNPs).
    Żarowska B; Koźlecki T; Piegza M; Jaros-Koźlecka K; Robak M
    Pol J Microbiol; 2019 Dec; 68(4):515-525. PubMed ID: 31880895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The antifungal agent of silver nanoparticles activated by diode laser as light source to reduce C. albicans biofilms: an in vitro study.
    Astuti SD; Puspita PS; Putra AP; Zaidan AH; Fahmi MZ; Syahrom A; Suhariningsih
    Lasers Med Sci; 2019 Jul; 34(5):929-937. PubMed ID: 30413898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of poly(methacrylic acid)-silver nanoparticles on fluconazole-resistant Candida albicans strains: Synergistic and cytotoxic effects.
    Falcão CMC; Andrade A; Holanda VN; de Figueiredo RCBQ; Ximenes EA; Gomes ASL
    J Appl Microbiol; 2022 Jun; 132(6):4300-4309. PubMed ID: 35338561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human salivary histatin 5 fungicidal action does not induce programmed cell death pathways in Candida albicans.
    Wunder D; Dong J; Baev D; Edgerton M
    Antimicrob Agents Chemother; 2004 Jan; 48(1):110-5. PubMed ID: 14693527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles.
    Vazquez-Muñoz R; Avalos-Borja M; Castro-Longoria E
    PLoS One; 2014; 9(10):e108876. PubMed ID: 25290909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals.
    Hwang IS; Lee J; Hwang JH; Kim KJ; Lee DG
    FEBS J; 2012 Apr; 279(7):1327-38. PubMed ID: 22324978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenic nanosilver synthesized in Metarhizium robertsii waste mycelium extract - As a modulator of Candida albicans morphogenesis, membrane lipidome and biofilm.
    Różalska B; Sadowska B; Budzyńska A; Bernat P; Różalska S
    PLoS One; 2018; 13(3):e0194254. PubMed ID: 29554119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxic and Antimicrobial Efficacy of Silver Nanoparticles Synthesized Using a Traditional Phytoproduct, Asafoetida Gum.
    Devanesan S; Ponmurugan K; AlSalhi MS; Al-Dhabi NA
    Int J Nanomedicine; 2020; 15():4351-4362. PubMed ID: 32606682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver nanoparticles embedded mesoporous SiO₂ nanosphere: an effective anticandidal agent against Candida albicans 077.
    Qasim M; Singh BR; Naqvi AH; Paik P; Das D
    Nanotechnology; 2015 Jul; 26(28):285102. PubMed ID: 26119911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pleurotus sajor-caju can be used to synthesize silver nanoparticles with antifungal activity against Candida albicans.
    Musa SF; Yeat TS; Kamal LZM; Tabana YM; Ahmed MA; El Ouweini A; Lim V; Keong LC; Sandai D
    J Sci Food Agric; 2018 Feb; 98(3):1197-1207. PubMed ID: 28746729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoparticles from Pilimelia columellifera subsp. pallida SL19 strain demonstrated antifungal activity against fungi causing superficial mycoses.
    Wypij M; Czarnecka J; Dahm H; Rai M; Golinska P
    J Basic Microbiol; 2017 Sep; 57(9):793-800. PubMed ID: 28670763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal activity of silver nanoparticles obtained by green synthesis.
    Mallmann EJ; Cunha FA; Castro BN; Maciel AM; Menezes EA; Fechine PB
    Rev Inst Med Trop Sao Paulo; 2015; 57(2):165-7. PubMed ID: 25923897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode of action and anti-Candida activity of Artemisia annua mediated-synthesized silver nanoparticles.
    Khatoon N; Sharma Y; Sardar M; Manzoor N
    J Mycol Med; 2019 Sep; 29(3):201-209. PubMed ID: 31378442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.