These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31308664)
1. Encapsulation of a nanoporous simvastatin-chitosan composite to enhance osteointegration of hydroxyapatite-coated polyethylene terephthalate ligaments. Ding X; Wang S; Jin W; Liu X; Chen J; Chen S Int J Nanomedicine; 2019; 14():4881-4893. PubMed ID: 31308664 [TBL] [Abstract][Full Text] [Related]
2. Enhance the biocompatibility and osseointegration of polyethylene terephthalate ligament by plasma spraying with hydroxyapatite in vitro and in vivo. Wang S; Ge Y; Ai C; Jiang J; Cai J; Sheng D; Wan F; Liu X; Hao Y; Chen J; Chen S Int J Nanomedicine; 2018; 13():3609-3623. PubMed ID: 29983557 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite. Jiang J; Wan F; Yang J; Hao W; Wang Y; Yao J; Shao Z; Zhang P; Chen J; Zhou L; Chen S Int J Nanomedicine; 2014; 9():4569-80. PubMed ID: 25302023 [TBL] [Abstract][Full Text] [Related]
4. Biomineralizaion of hydroxyapatite on polyethylene terephthalate artificial ligaments promotes graft-bone healing after anterior cruciate ligament reconstruction: An in vitro and in vivo study. Cai J; Ai C; Chen J; Chen S J Biomater Appl; 2020 Aug; 35(2):193-204. PubMed ID: 32338167 [TBL] [Abstract][Full Text] [Related]
5. Local delivery of controlled-release simvastatin to improve the biocompatibility of polyethylene terephthalate artificial ligaments for reconstruction of the anterior cruciate ligament. Zhang P; Han F; Li Y; Chen J; Chen T; Zhi Y; Jiang J; Lin C; Chen S; Zhao P Int J Nanomedicine; 2016; 11():465-78. PubMed ID: 26869789 [TBL] [Abstract][Full Text] [Related]
6. Effects of bioactive strontium-substituted hydroxyapatite on osseointegration of polyethylene terephthalate artificial ligaments. Ma P; Chen T; Wu X; Hu Y; Huang K; Wang Y; Dai H J Mater Chem B; 2021 Sep; 9(33):6600-6613. PubMed ID: 34369537 [TBL] [Abstract][Full Text] [Related]
7. Surface Functionalization with Proanthocyanidins Provides an Anti-Oxidant Defense Mechanism That Improves the Long-Term Stability and Osteogenesis of Titanium Implants. Tang J; Chen L; Yan D; Shen Z; Wang B; Weng S; Wu Z; Xie Z; Shao J; Yang L; Shen L Int J Nanomedicine; 2020; 15():1643-1659. PubMed ID: 32210558 [TBL] [Abstract][Full Text] [Related]
8. Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGA Microspheres for Bone Repair. Li Y; Zhang Z; Zhang Z Cells Tissues Organs; 2018; 205(1):20-31. PubMed ID: 29393155 [TBL] [Abstract][Full Text] [Related]
9. Silicate-substituted strontium apatite nano coating improves osteogenesis around artificial ligament. Egawa T; Inagaki Y; Akahane M; Furukawa A; Inoue K; Ogawa M; Tanaka Y BMC Musculoskelet Disord; 2019 Aug; 20(1):396. PubMed ID: 31472679 [TBL] [Abstract][Full Text] [Related]
10. Influence of Simvastatin-Strontium-Hydroxyapatite Coated Implant Formed by Micro-Arc Oxidation and Immersion Method on Osteointegration in Osteoporotic Rabbits. Zhao B; Li X; Xu H; Jiang Y; Wang D; Liu R Int J Nanomedicine; 2020; 15():1797-1807. PubMed ID: 32214812 [TBL] [Abstract][Full Text] [Related]
11. Effect of Low-Intensity Pulsed Ultrasound on the Graft-Bone Healing of Artificial Ligaments: An In Vitro and In Vivo Study. Liu X; Sun K; Xu P; Yu Z; Lei Z; Zhou H; Li J; Li X; Zhu Z; Wang H; Chen C; Bai X Am J Sports Med; 2022 Mar; 50(3):801-813. PubMed ID: 35289229 [TBL] [Abstract][Full Text] [Related]
12. Salvianolic Acid B-Loaded Chitosan/hydroxyapatite Scaffolds Promotes The Repair Of Segmental Bone Defect By Angiogenesis And Osteogenesis. Ji C; Bi L; Li J; Fan J Int J Nanomedicine; 2019; 14():8271-8284. PubMed ID: 31686820 [TBL] [Abstract][Full Text] [Related]
13. [Experimental study on ectopic osteogenesis induced by bone morphogenetic protein 2-derived peptide P24 loaded chitosan-4-thio-butylamidine hydrogel]. Zhan J; Liu X; Yu B Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1144-1149. PubMed ID: 30129342 [TBL] [Abstract][Full Text] [Related]
14. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation. Chen B; Lin T; Yang X; Li Y; Xie D; Zheng W; Cui H; Deng W; Tan X Int J Mol Med; 2016 Nov; 38(5):1531-1540. PubMed ID: 28026000 [TBL] [Abstract][Full Text] [Related]
15. Chitosan-miRNA functionalized microporous titanium oxide surfaces via a layer-by-layer approach with a sustained release profile for enhanced osteogenic activity. Wu K; Liu M; Li N; Zhang L; Meng F; Zhao L; Liu M; Zhang Y J Nanobiotechnology; 2020 Sep; 18(1):127. PubMed ID: 32907598 [TBL] [Abstract][Full Text] [Related]
16. Effects of a bone graft substitute consisting of porous gradient HA/ZrO Shao RX; Quan RF; Wang T; Du WB; Jia GY; Wang D; Lv LB; Xu CY; Wei XC; Wang JF; Yang DS J Tissue Eng Regen Med; 2018 Mar; 12(3):e1813-e1825. PubMed ID: 29055138 [TBL] [Abstract][Full Text] [Related]
17. The enhancement of osseointegration using a graphene oxide/chitosan/hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition. Suo L; Jiang N; Wang Y; Wang P; Chen J; Pei X; Wang J; Wan Q J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):635-645. PubMed ID: 29802685 [TBL] [Abstract][Full Text] [Related]
18. Using co-axial electrospray deposition to eliminate burst release of simvastatin from microparticles and to enhance induced osteogenesis. Yuan X; Zhang M; Wang Y; Zhao H; Sun D J Biomater Sci Polym Ed; 2019 Apr; 30(5):355-375. PubMed ID: 30572791 [TBL] [Abstract][Full Text] [Related]
19. Multilayer Gelatin-Supported BMP-9 Coating Promotes Osteointegration and Neo-Bone Formation at the n-CDHA/PAA Composite Biomaterial-Bone Interface. Yang Q; Li Y; Wan R; Dong L; He A; Zuo D; Dai Z Front Biosci (Landmark Ed); 2024 Sep; 29(9):326. PubMed ID: 39344336 [TBL] [Abstract][Full Text] [Related]
20. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. He P; Sahoo S; Ng KS; Chen K; Toh SL; Goh JC J Biomed Mater Res A; 2013 Feb; 101(2):555-66. PubMed ID: 22949167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]