BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31309385)

  • 1. Moving object tracking in clinical scenarios: application to cardiac surgery and cerebral aneurysm clipping.
    Dakua SP; Abinahed J; Zakaria A; Balakrishnan S; Younes G; Navkar N; Al-Ansari A; Zhai X; Bensaali F; Amira A
    Int J Comput Assist Radiol Surg; 2019 Dec; 14(12):2165-2176. PubMed ID: 31309385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long Term Safety Area Tracking (LT-SAT) with online failure detection and recovery for robotic minimally invasive surgery.
    Penza V; Du X; Stoyanov D; Forgione A; Mattos LS; De Momi E
    Med Image Anal; 2018 Apr; 45():13-23. PubMed ID: 29329053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An affine transformation invariance approach to cell tracking.
    Cui J; Ray N; Acton ST; Lin Z
    Comput Med Imaging Graph; 2008 Oct; 32(7):554-65. PubMed ID: 18667292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust 3D visual tracking for robotic-assisted cardiac interventions.
    Richa R; Bó AP; Poignet P
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):267-74. PubMed ID: 20879240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Head-up display may facilitate safe keyhole surgery for cerebral aneurysm clipping.
    Toyooka T; Otani N; Wada K; Tomiyama A; Takeuchi S; Fujii K; Kumagai K; Fujii T; Mori K
    J Neurosurg; 2018 Oct; 129(4):883-889. PubMed ID: 29192858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic tracking for abdominal interventions in computer aided surgery.
    Zhang H; Banovac F; Lin R; Glossop N; Wood BJ; Lindisch D; Levy E; Cleary K
    Comput Aided Surg; 2006 May; 11(3):127-36. PubMed ID: 16829506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Object extraction via deep learning-based marker-free tracking framework of surgical instruments for laparoscope-holder robots.
    Zhang J; Gao X
    Int J Comput Assist Radiol Surg; 2020 Aug; 15(8):1335-1345. PubMed ID: 32577985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patch-based adaptive weighting with segmentation and scale (PAWSS) for visual tracking in surgical video.
    Du X; Allan M; Bodenstedt S; Maier-Hein L; Speidel S; Dore A; Stoyanov D
    Med Image Anal; 2019 Oct; 57():120-135. PubMed ID: 31299494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying mean shift, motion information and Kalman filtering approaches to object tracking.
    Mazinan AH; Amir-Latifi A
    ISA Trans; 2012 May; 51(3):485-97. PubMed ID: 22409958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Future-Frame Prediction for Fast-Moving Objects with Motion Blur.
    Lee D; Oh YJ; Lee IK
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32781700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A level set framework with a shape and motion prior for segmentation and region tracking in echocardiography.
    Dydenko I; Jamal F; Bernard O; D'hooge J; Magnin IE; Friboulet D
    Med Image Anal; 2006 Apr; 10(2):162-77. PubMed ID: 16165394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fuzzy decision-making system for video tracking with multiple objects in non-stationary conditions.
    Fakhri PS; Asghari O; Sarspy S; Marand MB; Moshaver P; Trik M
    Heliyon; 2023 Nov; 9(11):e22156. PubMed ID: 38034808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and comparison of new hybrid motion tracking for bronchoscopic navigation.
    Luó X; Feuerstein M; Deguchi D; Kitasaka T; Takabatake H; Mori K
    Med Image Anal; 2012 Apr; 16(3):577-96. PubMed ID: 21334250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking of a bronchoscope using epipolar geometry analysis and intensity-based image registration of real and virtual endoscopic images.
    Mori K; Deguchi D; Sugiyama J; Suenaga Y; Toriwaki J; Maurer CR; Takabatake H; Natori H
    Med Image Anal; 2002 Sep; 6(3):321-36. PubMed ID: 12270236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Markerless real-time 3-D target region tracking by motion backprojection from projection images.
    Rohlfing T; Denzler J; Grässl C; Russakoff DB; Maurer CR
    IEEE Trans Med Imaging; 2005 Nov; 24(11):1455-68. PubMed ID: 16279082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror.
    Inoue M; Gu Q; Jiang M; Takaki T; Ishii I; Tajima K
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29109385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoscopic scene flow for robotic assisted minimally invasive surgery.
    Stoyanov D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):479-86. PubMed ID: 23285586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic tracking of affine-invariant anisotropic regions.
    Giannarou S; Visentini-Scarzanella M; Yang GZ
    IEEE Trans Pattern Anal Mach Intell; 2013 Jan; 35(1):130-43. PubMed ID: 22450819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface deformation tracking in monocular laparoscopic video.
    Liu Z; Gao W; Zhu J; Yu Z; Fu Y
    Med Image Anal; 2023 May; 86():102775. PubMed ID: 36848721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method.
    Zhao Z; Voros S; Weng Y; Chang F; Li R
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):26-35. PubMed ID: 28937281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.