These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 31309421)

  • 1. Life cycle assessment of autoclaved aerated fly ash and concrete block production: a case study in China.
    Shi Y; Li Y; Tang Y; Yuan X; Wang Q; Hong J; Zuo J
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25432-25444. PubMed ID: 31309421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on mercury re-emissions during fly ash utilization].
    Meng Y; Wang SX
    Huan Jing Ke Xue; 2012 Sep; 33(9):2993-9. PubMed ID: 23243850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessment and cost analysis of fly ash-rice husk ash blended alkali-activated concrete.
    Fernando S; Gunasekara C; Law DW; Nasvi MCM; Setunge S; Dissanayake R
    J Environ Manage; 2021 Oct; 295():113140. PubMed ID: 34198175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effect of silica fume and fly ash as cementitious material on strength characteristics, embodied carbon, and cost of autoclave aerated concrete.
    Lashari AR; Kumar A; Kumar R; Rizvi SH
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27875-27883. PubMed ID: 36394814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resource recycling sustainability assessment in ready-mixed concrete manufactured on energy consumption and environmental safety in China.
    Wang CQ; Wang PX; Zhang MT
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):19521-19529. PubMed ID: 33655473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative environmental assessment of low and high CaO fly ash in mass concrete mixtures for enhanced sustainability: Impact of fly ash type and transportation.
    Orozco CR; Tangtermsirikul S; Sugiyama T; Babel S
    Environ Res; 2023 Oct; 234():116579. PubMed ID: 37423372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of coal combustion fly ash use in concrete on the mass transport release of constituents of potential concern.
    Garrabrants AC; Kosson DS; DeLapp R; van der Sloot HA
    Chemosphere; 2014 May; 103():131-9. PubMed ID: 24359922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.
    Mehmannavaz T; Ismail M; Radin Sumadi S; Rafique Bhutta MA; Samadi M; Sajjadi SM
    ScientificWorldJournal; 2014; 2014():461241. PubMed ID: 24696646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.
    Lederer J; Trinkel V; Fellner J
    Waste Manag; 2017 Feb; 60():247-258. PubMed ID: 27815031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.
    Osmanlioglu AE
    Waste Manag Res; 2014 May; 32(5):366-70. PubMed ID: 24638274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization potential of fly ash and copper tailings in concrete as partial replacement of cement along with life cycle assessment.
    Dandautiya R; Singh AP
    Waste Manag; 2019 Nov; 99():90-101. PubMed ID: 31473485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental evaluation of green concretes versus conventional concrete by means of LCA.
    Turk J; Cotič Z; Mladenovič A; Šajna A
    Waste Manag; 2015 Nov; 45():194-205. PubMed ID: 26143535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of washed MSWI fly ash in cement composites: long-term environmental impacts.
    Yang Z; Tian S; Liu L; Wang X; Zhang Z
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):12127-12138. PubMed ID: 29455349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Very high volume fly ash green concrete for applications in India.
    Yu J; Mishra DK; Wu C; Leung CK
    Waste Manag Res; 2018 Jun; 36(6):520-526. PubMed ID: 29692220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainability assessment and prioritisation of bottom ash management in Macao.
    Sou WI; Chu A; Chiueh PT
    Waste Manag Res; 2016 Dec; 34(12):1275-1282. PubMed ID: 27637273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-dependent leaching of constituents of potential concern from concrete materials containing coal combustion fly ash.
    Kosson DS; Garrabrants AC; DeLapp R; van der Sloot HA
    Chemosphere; 2014 May; 103():140-7. PubMed ID: 24360846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial lightweight aggregates as utilization for future ashes - A case study.
    Sarabèr A; Overhof R; Green T; Pels J
    Waste Manag; 2012 Jan; 32(1):144-52. PubMed ID: 21963657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment and comparison of three high-aluminum fly ash utilization scenarios in Inner Mongolia, China using an eco-efficiency indicator.
    Yang S; Lin L; Li SP; Li Q; Wang XT; Sun L
    Waste Manag Res; 2017 May; 35(5):515-524. PubMed ID: 28097927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete.
    Teixeira ER; Camões A; Branco FG; Aguiar JB; Fangueiro R
    Waste Manag; 2019 Jul; 94():39-48. PubMed ID: 31279394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examining the endpoint impacts, challenges, and opportunities of fly ash utilization for sustainable concrete construction.
    Orozco C; Tangtermsirikul S; Sugiyama T; Babel S
    Sci Rep; 2023 Oct; 13(1):18254. PubMed ID: 37880405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.